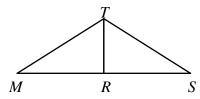
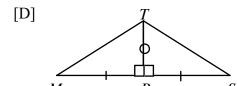
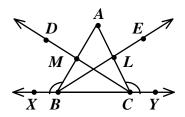

1. BCDF is a square. What additional information do you need to prove $\triangle ABF \cong \triangle EDF$ using ASA?

- I. $\angle ABF \cong \angle EDF$
- II. $\overline{AB} \cong \overline{ED}$
- III. $\overline{BF} \cong \overline{FD}$ IV. $\angle A \cong \angle E$

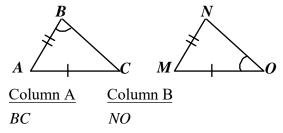

- [A] III only
- [B] II only
- [C] I, II, or IV
- [D] I only
- [E] III and IV
- 2. Given that \overline{AR} and \overline{BH} bisect each other at F, which of the following would you use to prove $\Delta AFB \cong \Delta RFH$?


- [A] SSS
- [B] AAS
- [C] ASA
- [D] HL
- [E] SAS

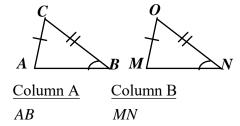
3. Given: R is the midpoint of \overline{MS} $\overline{TR} \perp \overline{MS}$


If you outlined a proof that shows $\overline{TM} \cong \overline{TS}$, which would NOT be used?

- [A] $\Delta TMR \cong \Delta TSR$ by the ASA congruency postulate
- [B] $\Delta TMR \cong \Delta TSR$ by the SAS congruency postulate
- [C] $\overline{TM} \cong \overline{TS}$ by CPCTC



4. \overrightarrow{BE} is the angle bisector of $\angle ABC$ and \overrightarrow{CD} is the angle bisector of $\angle ACB$. Also, $\angle XBA \cong \angle YCA$. Which of the following would you use to prove $\overrightarrow{BL} \cong \overrightarrow{CM}$?


- [A] AAS
- [B] SSS
- [C] ASA
- [D] SAS
- [E] HL

5. Compare the quantity in Column A with the quantity in Column B.

- [A] The quantity in Column A is greater.
- [B] The quantity in Column B is greater.

- [C] The two quantities are equal.
- [D] The relationship cannot be determined on the basis of the information supplied.
- 6. Compare the quantity in Column A with the quantity in Column B.

- [A] The quantity in Column A is greater.
- [B] The quantity in Column B is greater.

- [C] The two quantities are equal.
- [D] The relationship cannot be determined from the information supplied.

- [1] <u>C</u>
- [2] E
- [3] <u>A</u>
- [4] <u>C</u>
- [5] <u>D</u>
- [6] D