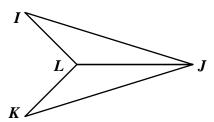
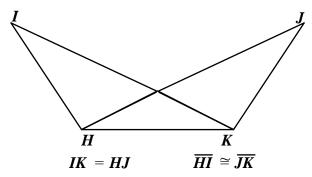
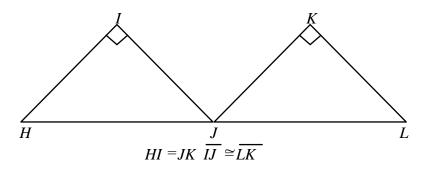

1. Refer to the figure below. Give a congruence statement for two triangles in the figure and name the theorem or postulate that proves the congruence.


 $\triangle DEF$ is equilateral. $DG \cong GF$

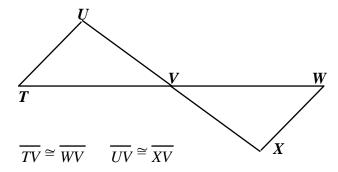
2. Refer to the figure below. Give a congruence statement for two triangles in the figure and name the theorem or postulate that proves the congruence.

$$\overline{GJ} \cong \overline{JI}$$


3. Refer to the figure below. Give a congruence statement for two triangles in the figure and name the theorem or postulate that proves the congruence.


$$\overline{LJ}$$
 bisects $\angle IJK$ $\angle ILJ \cong \angle JLK$

NAME:____


4. Refer to the figure below. Give a congruence statement for two triangles in the figure and name the theorem or postulate that proves the congruence.

5. Refer to the figure shown. Give a congruence statement for two triangles in the picture and name the theorem or postulate that proves the congruence.

6. Refer to the figure shown. Give a congruence statement for two triangles in the picture and name the theorem or postulate that proves the congruence.

- [1] $\Delta DGE \cong \Delta FGE$ by SSS
- [2] $\Delta GHJ \cong \Delta IHJ$ by SAS
- [3] $\Delta ILJ \cong \Delta KLJ$ by ASA
- [4] $\Delta HJK \cong \Delta KIH$ by SSS
- [5] $\Delta HIJ \cong \Delta JKL$ by SAS
- [6] $\Delta TUV \cong \Delta WXV$ by SAS