Regents Exam Questions G.SRT.B.5: Triangle Proofs 2 www.jmap.org

G.SRT.B.5: Triangle Proofs 2

Prove: $\triangle ABC \cong \triangle DEC$

1 Given: \overline{BE} and \overline{AD} intersect at point C $\overline{BC} \cong \overline{EC}$ $\overline{AC} \cong \overline{DC}$ \overline{AB} and \overline{DE} are drawn

2 In the diagram below, $\triangle ABE \cong \triangle CBD$.

Prove: $\triangle AFD \cong \triangle CFE$

3 Given: $\triangle AEB$ and $\triangle DFC$, \overline{ABCD} , $\overline{AE} \parallel \overline{DF}$, $\overline{EB} \parallel \overline{FC}$, $\overline{AC} \cong \overline{DB}$

Prove: $\triangle EAB \cong \triangle FDC$

4 Given: $\triangle ABC$, $\triangle DEF$, $\overline{AB} \perp \overline{BC}$, $\overline{DE} \perp \overline{EF}$, $\overline{AE} \cong \overline{DB}$, and $\overline{AC} \parallel \overline{FD}$

Prove: $\triangle ABC \cong \triangle DEF$

5 In the diagram of $\triangle MAH$ below, $\overline{MH} \cong \overline{AH}$ and medians \overline{AB} and \overline{MT} are drawn. Prove: $\angle MBA \cong \angle ATM$

Name:

Name:

6 Complete the partial proof below for the accompanying diagram by providing reasons for steps 3, 6, 8, and 9.

Given: \overline{AFCD} , $\overline{AB} \perp \overline{BC}$, $\overline{DE} \perp \overline{EF}$, $\overline{BC} \parallel \overline{FE}$, $\overline{AB} \cong \overline{DE}$ Prove: $\overline{AC} \cong \overline{FD}$

Reasons
1 Given
2 Given
3
4 All right angles
are congruent.
5 Given
6
7 0.
/ Given
8
9

7 Given: $\triangle ABC$, \overline{AEC} , \overline{BDE} with $\angle ABE \cong \angle CBE$, and $\angle ADE \cong \angle CDE$

Fill in the missing statement and reasons below.

Statements	Reasons
$1 \triangle ABC, \overline{AEC}, \overline{BDE}$	1 Given
with $\angle ABE \cong \angle CBE$,	
and $\angle ADE \cong \angle CDE$	
$2 \overline{BD} \cong \overline{BD}$	2
$3 \angle BDA$ and $\angle ADE$	3 Linear pairs of
are supplementary.	angles are
$\angle BDC$ and $\angle CDE$ are	supplementary.
supplementary.	
4	4 Supplements of
	congruent angles are
	congruent.
$5 \triangle ABD \cong \triangle CBD$	5 ASA
$6 \overline{AD} \cong \overline{CD}, \overline{AB} \cong \overline{CB}$	6
7 \overline{BDE} is the	7
perpendicular bisector	
of \overline{AC} .	

Regents Exam Questions G.SRT.B.5: Triangle Proofs 2 www.jmap.org

Name:

8 Given: $\triangle ABC$, \overline{BD} bisects $\angle ABC$, $\overline{BD} \perp \overline{AC}$ Prove: $\overline{AB} \cong \overline{CB}$

9 Given: \overline{AD} bisects \overline{BC} at E. $\overline{AB} \perp \overline{BC}$ $\overline{DC} \perp \overline{BC}$

Prove: $\overline{AB} \cong \overline{DC}$

10 Given: $\triangle ABC$ and $\triangle EDC$, C is the midpoint of \overline{BD} and \overline{AE} Prove: $\overline{AB} \parallel \overline{DE}$

11 Given: $\frac{\overline{RS}}{\overline{TR}}$ and $\frac{\overline{TV}}{\overline{SV}}$ bisect each other at point X $\frac{\overline{TR}}{\overline{TR}}$ and $\frac{\overline{SV}}{\overline{SV}}$ are drawn

Prove: $\overline{TR} \parallel \overline{SV}$

12 Given: \overline{MT} and \overline{HA} intersect at B, $\overline{MA} \parallel \overline{HT}$, and \overline{MT} bisects \overline{HA} .

Prove: $\overline{MA} \cong \overline{HT}$

G.SRT.B.5: Triangle Proofs 2 Answer Section

1 ANS:

 \overline{BE} and \overline{AD} intersect at point *C*, $\overline{BC} \cong \overline{EC}$, $\overline{AC} \cong \overline{DC}$, \overline{AB} and \overline{DE} are drawn (Given). $\angle BCA \cong \angle ECD$ (Vertical Angles). $\triangle ABC \cong \triangle DEC$ (SAS).

REF: 011529ge

2 ANS:

 $\frac{\triangle ABE \cong}{DB} \stackrel{\sim}{\simeq} \frac{\triangle CBD} \text{ (given); } \angle A \cong \angle C \text{ (CPCTC); } \angle AFD \cong \angle CFE \text{ (vertical angles are congruent); } AB \cong CB,$ $\frac{\Delta BB}{DB} \cong \overline{EB} \text{ (CPCTC); } \overline{AD} \cong \overline{CE} \text{ (segment subtraction); } \Delta AFD \cong \triangle CFE \text{ (AAS)}$

REF: 081933geo

3 ANS:

 $\triangle AEB$ and $\triangle DFC$, \overline{ABCD} , $\overline{AE} \parallel \overline{DF}$, $\overline{EB} \parallel \overline{FC}$, $\overline{AC} \cong \overline{DB}$ (given); $\angle A \cong \angle D$ (Alternate interior angles formed by parallel lines and a transversal are congruent); $\angle EBA \cong \angle FCD$ (Alternate exterior angles formed by parallel lines and a transversal are congruent); $\overline{BC} \cong \overline{BC}$ (reflexive); $\overline{AB} \cong \overline{CD}$ (segment subtraction); $\triangle EAB \cong \triangle FDC$ (ASA)

REF: 012333geo

4 ANS:

 $\triangle ABC, \triangle DEF, \overline{AB} \perp \overline{BC}, \overline{DE} \perp \overline{EF}, \overline{AE} \cong \overline{DB}$, and $\overline{AC} \parallel \overline{FD}$ (Given); $\angle DEF \cong \angle CBA$ (Perpendicular lines form congruent angles); $\angle CAB \cong \angle DEF$ (Parallel lines cut by a transversal form congruent alternate interior angles); $\overline{EB} \cong \overline{BE}$ (Symmetric Property); $\overline{AE} + \overline{EB} \cong \overline{DB} + \overline{BE}$ (Segment Addition); $\triangle ABC \cong \triangle DEF$ (ASA)

$$AB \cong ED$$

REF: 062433geo

5 ANS:

 $\triangle MAH$, $MH \cong AH$ and medians AB and MT are given. $MA \cong AM$ (reflexive property). $\triangle MAH$ is an isosceles triangle (definition of isosceles triangle). $\angle AMB \cong \angle MAT$ (isosceles triangle theorem). B is the midpoint of \overline{MH} and T is the midpoint of \overline{AH} (definition of median). $\overline{mMB} = \frac{1}{2} \overline{mMH}$ and $\overline{mAT} = \frac{1}{2} \overline{mAH}$ (definition of midpoint). $\overline{MB} \cong \overline{AT}$ (multiplication postulate). $\triangle MBA \cong \triangle ATM$ (SAS). $\angle MBA \cong \angle ATM$ (CPCTC).

REF: 061338ge

6 ANS:

3 Perpendicular line segments form right angles; 6 If two parallel lines are cut by a transversal, the alternate

interior angles are congruent; 8 AAS; 9 CPCTC.

REF: 060229b

7 ANS:

2 Reflexive; $4 \angle BDA \cong \angle BDC$; 6 CPCTC; 7 If points *B* and *D* are equidistant from the endpoints of *AC*, then *B* and *D* are on the perpendicular bisector of \overline{AC} .

REF: 081832geo

8 ANS:

 $\triangle ABC, \overline{BD}$ bisects $\angle ABC, \overline{BD} \perp \overline{AC}$ (Given). $\angle CBD \cong \angle ABD$ (Definition of angle bisector). $\overline{BD} \cong \overline{BD}$ (Reflexive property). $\angle CDB$ and $\angle ADB$ are right angles (Definition of perpendicular). $\angle CDB \cong \angle ADB$ (All right angles are congruent). $\triangle CDB \cong \triangle ADB$ (SAS). $\overline{AB} \cong \overline{CB}$ (CPCTC).

REF: 081335ge

9 ANS:

 $\angle B$ and $\angle C$ are right angles because perpendicular lines form right angles. $\angle B \cong \angle C$ because all right angles are congruent. $\angle AEB \cong \angle DEC$ because vertical angles are congruent. $\triangle ABE \cong \triangle DCE$ because of ASA. $\overline{AB} \cong \overline{DC}$ because CPCTC.

REF: 061235ge

10 ANS:

 $\overline{AC} \cong \overline{EC}$ and $\overline{DC} \cong \overline{BC}$ because of the definition of midpoint. $\angle ACB \cong \angle ECD$ because of vertical angles. $\triangle ABC \cong \triangle EDC$ because of SAS. $\angle CDE \cong \angle CBA$ because of CPCTC. \overline{BD} is a transversal intersecting \overline{AB} and

 \overline{ED} . Therefore $\overline{AB} \parallel \overline{DE}$ because $\angle CDE$ and $\angle CBA$ are congruent alternate interior angles.

REF: 060938ge

11 ANS:

 \overline{RS} and \overline{TV} bisect each other at point X; \overline{TR} and \overline{SV} are drawn (given); $\overline{TX} \cong \overline{XV}$ and $\overline{RX} \cong \overline{XS}$ (segment bisectors create two congruent segments); $\angle TXR \cong \angle VXS$ (vertical angles are congruent); $\triangle TXR \cong \triangle VXS$ (SAS); $\angle T \cong \angle V$ (CPCTC); $\overline{TR} \parallel \overline{SV}$ (a transversal that creates congruent alternate interior angles cuts parallel lines).

REF: 061733geo

12 ANS:

 \overline{MT} and \overline{HA} intersect at B, $\overline{MA} \parallel \overline{HT}$, and \overline{MT} bisects \overline{HA} (Given). $\angle MBA \cong \angle TBH$ (Vertical Angles). $\angle A \cong \angle H$ (Alternate Interior Angles). $\overline{BH} \cong \overline{BA}$ (The bisection of a line segment creates two congruent segments). $\triangle MAB \cong \triangle THB$ (ASA). $\overline{MA} \cong \overline{HT}$ (CPCTC).

REF: 081435ge

ID: A