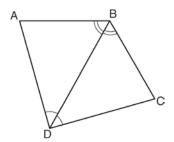
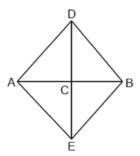

G.SRT.B.5: Triangle Congruency

1 In the diagram below, $\triangle ABC \cong \triangle XYZ$.

Which statement must be true?

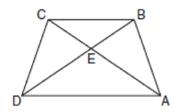

- 1) $\angle C \cong \angle Y$
- 2) $\angle A \cong \angle X$
- 3) $\overline{AC} \cong \overline{YZ}$
- 4) $\overline{CB} \cong \overline{XZ}$
- 2 In the diagram below, $\triangle ABC \cong \triangle XYZ$.

Which two statements identify corresponding congruent parts for these triangles?


- 1) $\overline{AB} \cong \overline{XY}$ and $\angle C \cong \angle Y$
- 2) $\overline{AB} \cong \overline{YZ}$ and $\angle C \cong \angle X$
- 3) $\overline{BC} \cong \overline{XY}$ and $\angle A \cong \angle Y$
- 4) $\overline{BC} \cong \overline{YZ}$ and $\angle A \cong \angle X$

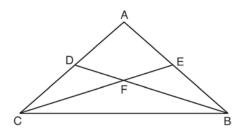
3 The diagram below shows a pair of congruent triangles, with $\angle ADB \cong \angle CDB$ and $\angle ABD \cong \angle CBD$.

Which statement must be true?


- 1) $\angle ADB \cong \angle CBD$
- 2) $\angle ABC \cong \angle ADC$
- 3) $\overline{AB} \cong \overline{CD}$
- 4) $\overline{AD} \cong \overline{CD}$
- 4 In the diagram below of quadrilateral ADBE, \overline{DE} is the perpendicular bisector of \overline{AB} .

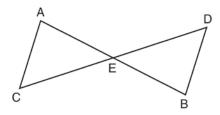
Which statement is always true?

- 1) $\angle ADC \cong \angle BDC$
- 2) $\angle EAC \cong \angle DAC$
- 3) $\overline{AD} \cong \overline{BE}$
- 4) $\overline{AE} \cong \overline{AD}$


5 In the diagram of trapezoid ABCD below, diagonals \overline{AC} and \overline{BD} intersect at E and $\triangle ABC \cong \triangle DCB$.

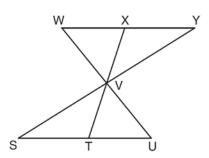
Which statement is true based on the given information?

- 1) $\overline{AC} \cong \overline{BC}$
- 2) $\overline{CD} \cong \overline{AD}$
- 3) $\angle CDE \cong \angle BAD$
- 4) $\angle CDB \cong \angle BAC$


6 In $\triangle ABC$ shown below with \overline{ADC} , \overline{AEB} , \overline{CFE} , and \overline{BFD} , $\triangle ACE \cong \triangle ABD$.

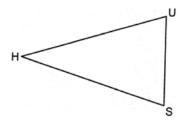
Which statement must be true?

- 1) $\angle ACF \cong \angle BCF$
- 2) $\angle DAE \cong \angle DFE$
- 3) $\angle BCD \cong \angle ABD$
- 4) $\angle AEF \cong \angle ADF$


7 In the diagram below, $\triangle AEC \cong \triangle BED$.

Which statement is *not* always true?

- 1) $\overline{AC} \cong \overline{BD}$
- 2) $\overline{CE} \cong \overline{DE}$
- 3) $\angle EAC \cong \angle EBD$
- 4) $\angle ACE \cong \angle DBE$

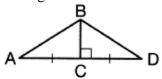

8 In the diagram below, $\triangle XYV \cong \triangle TSV$.

Which statement can *not* be proven?

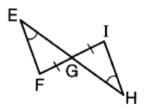
- 1) $\angle XVY \cong \angle TVS$
- 2) $\angle VYX \cong \angle VUT$
- 3) $\overline{XY} \cong \overline{TS}$
- 4) $\overline{YV} \cong \overline{SV}$

9 Triangle *HUS* is shown below.

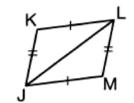
If point G is located on \overline{US} and \overline{HG} is drawn, which additional information is sufficient to prove $\triangle HUG \cong \triangle HSG$ by SAS?

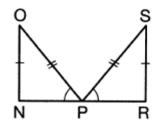

- 1) \overline{HG} bisects \overline{US}
- 2) \overline{HG} is an altitude
- 3) \overline{HG} bisects $\angle UHS$
- 4) \overline{HG} is the perpendicular bisector of \overline{US}

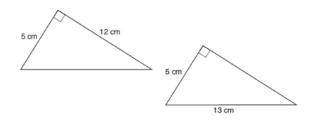
10 If $\triangle JKL \cong \triangle MNO$, which statement is always true?


- 1) $\angle KLJ \cong \angle NMO$
- 2) $\angle KJL \cong \angle MON$
- 3) $\overline{JL} \cong \overline{MO}$
- 4) $\overline{JK} \cong \overline{ON}$

- 11 If $\triangle MNP \cong \triangle VWX$ and \overline{PM} is the shortest side of $\triangle MNP$, what is the shortest side of $\triangle VWX$?
 - 1) \overline{XV}
 - \overline{WX}
 - 3) \overline{VW}
 - 4) \overline{NP}
- 12 If $\triangle ABC \cong \triangle JKL \cong \triangle RST$, then \overline{BC} must be congruent to
 - 1) \overline{JL}
 - 2) \overline{JK}
 - 3) \overline{ST}
 - 4) \overline{RS}
- 13 Which statement is *not* always true when $\triangle ABC \cong \triangle XYZ$.
 - 1) $\overline{BC} \cong \overline{YZ}$
 - 2) $\overline{CA} \cong \overline{XY}$
 - 3) $\angle CAB \cong \angle ZXY$
 - 4) $\angle BCA \cong \angle YZX$
- 14 Given $\triangle ABC \cong \triangle DEF$, which statement is *not* always true?
 - 1) $\overline{BC} \cong \overline{DF}$
 - 2) $m\angle A = m\angle D$
 - 3) area of $\triangle ABC$ = area of $\triangle DEF$
 - 4) perimeter of $\triangle ABC$ = perimeter of $\triangle DEF$

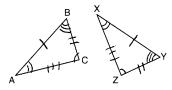

15 Given the information marked on the diagrams below, which pair of triangles can *not* always be proven congruent?


 $\triangle ABC$ and $\triangle DBC$


 \triangle EFG and \triangle HIG

 $_{3)}$ \triangle KLJ and \triangle MJL

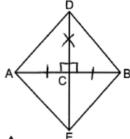
- $\triangle NOP$ and $\triangle RSP$
- 16 Skye says that the two triangles below are congruent. Margaret says that the two triangles are similar.


Are Skye and Margaret both correct? Explain why.

G.SRT.B.5: Triangle Congruency

Answer Section

1 ANS: 2 REF: 081102ge


2 ANS: 4

REF: 081001ge

3 ANS: 4 REF: 011216ge

4 ANS: 1

 $\triangle ADC \cong \triangle BDC$ by SAS

REF: 082316geo

5 ANS: 4 REF: 080905ge 6 ANS: 4 REF: 081501ge 7 ANS: 4 REF: 061410ge

8 ANS: 2

(1) is true because of vertical angles. (3) and (4) are true because CPCTC.

REF: 061302ge

9 ANS: 4 REF: 082410geo 10 ANS: 3 REF: 061102ge 11 ANS: 1 REF: 011301ge 12 ANS: 3 REF: 081309ge 13 ANS: 2 REF: 011624ge 14 ANS: 1 REF: 011703geo

15 ANS: 4

1) SAS; 2) AAS; 3) SSS

REF: 062216geo

16 ANS:

Yes. The triangles are congruent because of SSS $(5^2 + 12^2 = 13^2)$. All congruent triangles are similar.

REF: 061830geo