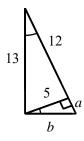

1. The two small triangles in the following figure are similar. Find the values of x and y to the nearest thousandth.

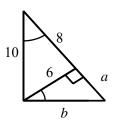

[A]
$$x = 12$$
, $y = 15$

[B]
$$x = 15$$
, $y = 12$

[C]
$$x = 9.6$$
, $y = 12$

[D]
$$x = 32$$
, $y = 25.6$

2. Solve for *a* and *b*.

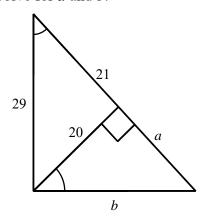

[A]
$$a = \frac{25}{12}$$
, $b = \frac{65}{12}$ [B] $a = \frac{5}{12}$, $b = \frac{65}{12}$ [C] $a = \frac{25}{12}$, $b = \frac{5}{12}$ [D] $a = \frac{65}{12}$, $b = \frac{13}{12}$

[B]
$$a = \frac{5}{12}$$
, $b = \frac{65}{12}$

[C]
$$a = \frac{25}{12}, b = \frac{5}{12}$$

[D]
$$a = \frac{65}{12}, b = \frac{13}{12}$$

3. Solve for a and b.

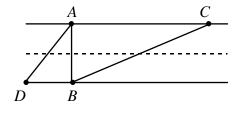

[A]
$$a = \frac{3}{4}, b = \frac{15}{2}$$

[B]
$$a = \frac{9}{2}, b = \frac{15}{2}$$

[A]
$$a = \frac{3}{4}$$
, $b = \frac{15}{2}$ [B] $a = \frac{9}{2}$, $b = \frac{15}{2}$ [C] $a = \frac{15}{2}$, $b = \frac{5}{4}$ [D] $a = \frac{9}{2}$, $b = \frac{3}{4}$

[D]
$$a = \frac{9}{2}, b = \frac{3}{4}$$

4. Solve for *a* and *b*.

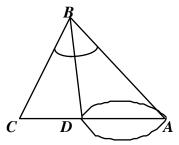

[A]
$$a = \frac{580}{21}$$
, $b = \frac{29}{21}$

[C]
$$a = \frac{20}{21}$$
, $b = \frac{580}{21}$

[B]
$$a = \frac{400}{21}$$
, $b = \frac{20}{21}$

[D]
$$a = \frac{400}{21}$$
, $b = \frac{580}{21}$

5. Refer to the figure below. James is standing at Point B and must cross the street to get to Point C. $\triangle BDA \sim \triangle ABC$. DB = 5 ft, AB = 12 ft, and AD = 13 ft. What is the distance from Point B to Point C?


[A] 31.2 ft

[B] 30 ft

[C] 5.4 ft

[D] 4.6 ft

6. Describe how this figure could be used to find the width *DA* of the swamp. What calculations and measurements would you use?

- [1] B
- [2] <u>A</u>
- [3] B
- [4] D
- [5] A

Answers may vary. Sample: measure \overline{DC} , \overline{BC} and \overline{BA} . Then solve the proportion

AD CD

[6] \overline{BA} \overline{BC}