
1. Given: $\overline{AB} \cong \overline{DC}$ and $\overline{AC} \cong \overline{DB}$. Prove: $\triangle ABC \cong \triangle DCB$.

2. Given: $\overline{BC} \cong \overline{DA}$, $\angle 1 \cong \angle 2$. Prove: $\triangle BEA \cong \triangle DEC$.

3. Given quadrilateral ABCD with $\angle BAC \cong \angle ACD$ and $\overline{AB} \cong \overline{CD}$. Write a paragraph proof, a flow proof, or a two-column proof to show ABCD is a parallelogram.

- [1] \overline{BC} is congruent to \overline{CB} by the reflexive property. So $\triangle ABC$ is congruent to $\triangle DCB$ by SSS. $\angle BEC \cong \angle DEA$ by vertical angles. $\triangle BEC \cong \triangle DEA$ by AAS. Then by CPCTC,
- [2] $\overline{BE} \cong \overline{DE}$, and $\overline{AE} \cong \overline{CE}$. $\angle BEA \cong \angle DEC$ by vertical angles, so $\triangle BEA \cong \triangle DEC$ by SAS.

Check students' work. Show $\triangle ABC \cong \triangle CDA$ by SAS and that ABCD is a parallelogram since both pairs of opposite sides of a quadrilateral are congruent.