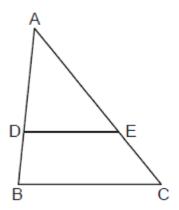
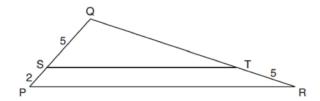

G.SRT.B.4: Side Splitter Theorem 1

1 In the diagram below of $\triangle CER$, $\overline{LA} \parallel \overline{CR}$.

If CL = 3.5, LE = 7.5, and EA = 9.5, what is the length of \overline{AR} , to the *nearest tenth*?

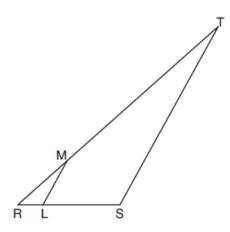

- 1) 5.5
- 2) 4.4
- 3) 3.0
- 4) 2.8
- 2 <u>In right triangle ABC shown below, point D</u> is on \overline{AB} and point E is on \overline{CB} such that $\overline{AC} \parallel \overline{DE}$.

If AB = 15, BC = 12, and EC = 7, what is the length of \overline{BD} ?


- 1) 8.75
- 2) 6.25
- 3) 5
- 4) 4

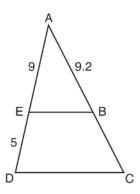
3 In triangle \overline{ABC} below, \overline{D} is a point on \overline{AB} and \overline{E} is a point on \overline{AC} , such that $\overline{DE} \parallel \overline{BC}$.

If AD = 12, DB = 8, and EC = 10, what is the length of \overline{AC} ?


- 1) 15
- 2) 22
- 3) 24
- 4) 25
- 4 In the diagram below of $\triangle PQR$, \overline{ST} is drawn parallel to \overline{PR} , PS = 2, SQ = 5, and TR = 5.

What is the length of \overline{QR} ?

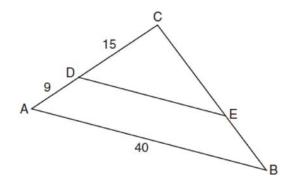
- 1) 7
- 2) 2
- 3) $12\frac{1}{2}$
- 4) $17\frac{1}{2}$


5 In the diagram below of $\triangle RST$, L is a point on \overline{RS} , and M is a point on \overline{RT} , such that $LM \parallel ST$.

If RL = 2, LS = 6, LM = 4, and ST = x + 2, what is the length of \overline{ST} ?

- 1) 10
- 2) 12
- 3) 14
- 4) 16

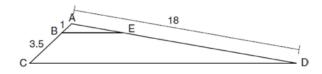
6 In the diagram of $\triangle ADC$ below, $\overline{EB} \parallel \overline{DC}$, AE = 9, ED = 5, and AB = 9.2.



What is the length of \overline{AC} , to the *nearest tenth*?

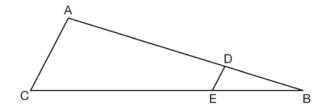
- 1) 5.1
- 2) 5.2
- 3) 14.3
- 4) 14.4

7 In the diagram of $\triangle ABC$ below, \overline{DE} is parallel to


AB, CD = 15, AD = 9, and AB = 40.

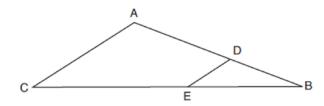
The length of \overline{DE} is

- 1) 15
- 2) 24
- 3) 25
- 4) 30


8 In the diagram below, triangle ACD has points B and E on sides \overline{AC} and \overline{AD} , respectively, such that $\overline{BE} \parallel \overline{CD}$, AB = 1, BC = 3.5, and AD = 18.

What is the length of \overline{AE} , to the *nearest tenth*?

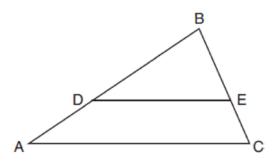
- 1) 14.0
- 2) 5.1
- 3) 3.3
- 4) 4.0


9 In the diagram of $\triangle ABC$, points D and E are on \overline{AB} and \overline{CB} , respectively, such that $\overline{AC} \parallel \overline{DE}$.

If AD = 24, DB = 12, and DE = 4, what is the length of \overline{AC} ?

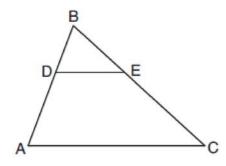
- 1) 8
- 2) 12
- 3) 16
- 4) 72

In the diagram of $\triangle ABC$ below, points D and E are on sides \overline{AB} and \overline{CB} respectively, such that $\overline{DE} \parallel \overline{AC}$.



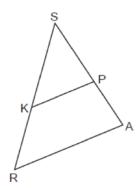
If *EB* is 3 more than \overline{DB} , AB = 14, and CB = 21, what is the length of \overline{AD} ?

- 1) 6
- 2) 8
- 3) 9
- 4) 12


11 In triangle ABC, points D and E are on sides \overline{AB} and \overline{BC} , respectively, such that $\overline{DE} \parallel \overline{AC}$, and AD:DB=3:5.

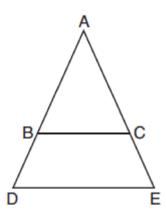
If DB = 6.3 and AC = 9.4, what is the length of DE, to the *nearest tenth*?

- 1) 3.8
- 2) 5.6
- 3) 5.9
- 4) 15.7


12 In the diagram below of $\triangle ABC$, D is a point on \overline{BA} , E is a point on \overline{BC} , and \overline{DE} is drawn.

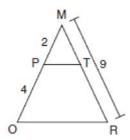
If BD = 5, DA = 12, and BE = 7, what is the length of \overline{BC} so that $\overline{AC} \parallel \overline{DE}$?

- 1) 23.8
- 2) 16.8
- 3) 15.6
- 4) 8.6


13 In the diagram of $\triangle SRA$ below, \overline{KP} is drawn such that $\angle SKP \cong \angle SRA$.

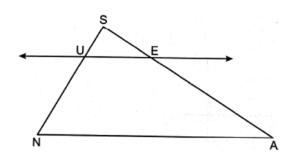
If SK = 10, SP = 8, and PA = 6, what is the length of \overline{KR} , to the *nearest tenth*?

- 1) 4.8
- 2) 7.5
- 3) 8.0
- 4) 13.3


14 In the diagram below, \overline{BC} connects points B and C on the congruent sides of isosceles triangle ADE, such that $\triangle ABC$ is isosceles with vertex angle A.

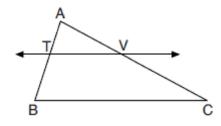
If AB = 10, BD = 5, and DE = 12, what is the length of \overline{BC} ?

- 1) 6
- 2) 7
- 3) 8
- 4) 9


15 Given $\triangle MRO$ shown below, with trapezoid *PTRO*, MR = 9, MP = 2, and PO = 4.

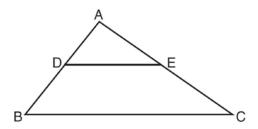
What is the length of \overline{TR} ?

- 1) 4.5
- 2) 5
- 3) 3
- 4) 6


16 In $\triangle SNA$ below, $\overrightarrow{UE} \parallel \overline{NA}$.

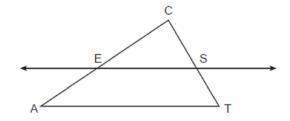
If $\underline{SU} = 3$, SN = 11, and EA = 13, what is the length of \overline{SE} , to the *nearest tenth*?

- 1) 2.5
- 2) 3.5
- 3) 4.9
- 4) 17.9


17 In the diagram below of $\triangle ABC$, \overline{TV} intersects \overline{AB} and \overline{AC} at points T and V respectively, and $m\angle ATV = m\angle ABC$.

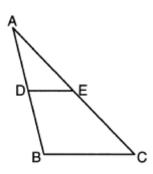
If AT = 4, BC = 18, TB = 5, and AV = 6, what is the perimeter of quadrilateral TBCV?

- 1) 38.5
- 2) 39.5
- 3) 40.5
- 4) 44.9


18 In the diagram below, $\triangle ABC \sim \triangle ADE$.

Which measurements are justified by this similarity?

- 1) AD = 3, AB = 6, AE = 4, and AC = 12
- 2) AD = 5, AB = 8, AE = 7, and AC = 10
- 3) AD = 3, AB = 9, AE = 5, and AC = 10
- 4) AD = 2, AB = 6, AE = 5, and AC = 15

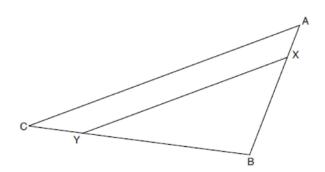

19 In the diagram below of $\triangle ACT$, \overrightarrow{ES} is drawn parallel to \overrightarrow{AT} such that E is on \overrightarrow{CA} and S is on \overrightarrow{CT} .

Which statement is always true?

- $1) \quad \frac{CE}{CA} = \frac{CS}{ST}$
- 2) $\frac{CE}{ES} = \frac{EA}{A7}$
- 3) $\frac{CE}{EA} = \frac{CS}{ST}$
- $4) \quad \frac{CE}{ST} = \frac{EA}{CS}$

20 In $\triangle ABC$ below, \overline{DE} is drawn such that D and E are on \overline{AB} and \overline{AC} , respectively.

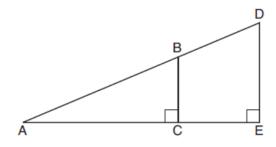
If $\overline{DE} \parallel \overline{BC}$, which equation will always be true?


$$1) \quad \frac{AD}{DE} = \frac{DB}{BC}$$

$$2) \quad \frac{AD}{DE} = \frac{AB}{BC}$$

3)
$$\frac{AD}{BC} = \frac{DE}{DB}$$

4)
$$\frac{AD}{BC} = \frac{DE}{AB}$$

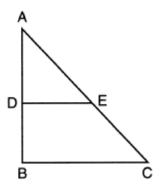

21 The diagram below shows triangle \underline{ABC} with point X on side \overline{AB} and point Y on side \overline{CB} .

Which information is sufficient to prove that $\triangle BXY \sim \triangle BAC$?

- 1) $\angle B$ is a right angle.
- 2) \overline{XY} is parallel to \overline{AC} .
- 3) $\triangle ABC$ is isosceles.
- 4) $\overline{AX} \cong \overline{CY}$

22 In the diagram below of right triangle *AED*, $\overline{BC} \parallel \overline{DE}$.

Which statement is always true?

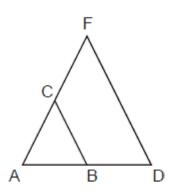

1)
$$\frac{AC}{BC} = \frac{DE}{AE}$$

$$2) \quad \frac{AB}{AD} = \frac{BC}{DE}$$

3)
$$\frac{AC}{CE} = \frac{BC}{DE}$$

4)
$$\frac{DE}{BC} = \frac{DB}{AB}$$

23 In triangle \overline{ABC} below, D is a point on \overline{AB} and E is a point on \overline{AC} , such that $\overline{DE} \parallel \overline{BC}$.


Which statement is always true?

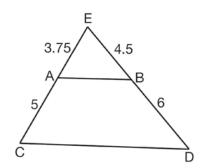
- 1) $\angle ADE$ and $\angle ABC$ are right angles.
- 2) $\triangle ADE \sim \triangle ABC$

$$3) \quad DE = \frac{1}{2}BC$$

4)
$$\overline{AD} \cong \overline{DB}$$

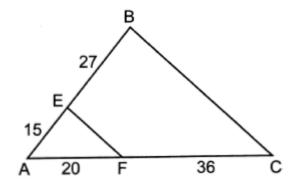
24 Triangle ADF is drawn and $\overline{BC} \parallel \overline{DF}$.

Which statement must be true?


$$1) \quad \frac{AB}{BC} = \frac{BD}{DF}$$

$$2) \quad BC = \frac{1}{2}DF$$

3)
$$AB:AD = AC:CF$$


4)
$$\angle ACB \cong \angle AFD$$

25 In \triangle *CED* as shown below, points *A* and *B* are located on sides \overline{CE} and \overline{ED} , respectively. Line segment *AB* is drawn such that AE = 3.75, AC = 5, EB = 4.5, and BD = 6.

Explain why \overline{AB} is parallel to \overline{CD} .

26 In the diagram below, AE = 15, EB = 27, AF = 20, and FC = 36.

Explain why $\overline{EF} \parallel \overline{BC}$.

G.SRT.B.4: Side Splitter Theorem 1 Answer Section

1 ANS: 2
$$\frac{7.5}{3.5} = \frac{9.5}{x}$$
 $x \approx 4.4$

2 ANS: 2
$$\frac{x}{15} = \frac{5}{12}$$

$$x = 6.25$$

3 ANS: 4
$$\frac{x}{10} = \frac{12}{8} \quad 15 + 10 = 25$$

$$x = 15$$

4 ANS: 4
$$\frac{5}{7} = \frac{x}{x+5} \quad 12\frac{1}{2} + 5 = 17\frac{1}{2}$$

$$5x + 25 = 7x$$

$$2x = 25$$

$$x = 12\frac{1}{2}$$

5 ANS: 4
$$\frac{2}{4} = \frac{8}{x+2} \quad 14+2=16$$

$$2x+4=32$$

$$x = 14$$

$$\frac{9}{5} = \frac{9.2}{x}$$
 5.1 + 9.2 = 14.3

$$9x = 46$$

$$x \approx 5.1$$

$$\frac{24}{40} = \frac{15}{x}$$

$$24x = 600$$

$$x = 25$$

$$\frac{1}{3.5} = \frac{x}{18 - x}$$

$$3.5x = 18 - x$$

$$4.5x = 18$$

$$x = 4$$

REF: 081707geo

$$\frac{12}{4} = \frac{36}{x}$$

$$12x = 144$$

$$x = 12$$

REF: 061621geo

$$\frac{x}{x+3} = \frac{14}{21} \qquad 14 - 6 = 8$$

$$21x = 14x + 42$$

$$7x = 42$$

$$x = 6$$

REF: 081812geo

11 ANS: 3

$$\frac{x}{6.3} = \frac{3}{5} \quad \frac{y}{9.4} = \frac{6.3}{6.3 + 3.78}$$

$$x = 3.78$$
 $y \approx 5.9$

REF: 081816geo

12 ANS: 1

$$5x = 12 \cdot 7 \ 16.8 + 7 = 23.8$$

$$5x = 84$$

$$x = 16.8$$

REF: 061911geo

13 ANS: 2

$$\frac{10}{x} = \frac{8}{6}$$

$$8x = 60$$

$$x = 7.5$$

REF: 012402geo

14 ANS: 3

$$\frac{10}{x} = \frac{15}{12}$$

$$x = 8$$

REF: 081918geo

15 ANS: 4

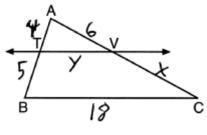
$$\frac{2}{4} = \frac{9 - x}{x}$$

$$36 - 4x = 2x$$

$$x = 6$$

REF: 061705geo

16 ANS: 3


$$\frac{x}{13} = \frac{3}{8}$$

$$8x = 39$$

$$x \approx 4.9$$

REF: 082405geo

17 ANS: 4

C
$$\frac{4}{5} = \frac{6}{x}$$
 $\frac{4}{9} = \frac{y}{18}$ 5 + 18 + 7.5 + 8 = 38.5

$$x = 7.5$$
 $y = 8$

REF: 082222geo

18 ANS: 4

$$\frac{2}{6} = \frac{5}{15}$$

REF: 081517geo

19 ANS: 3

REF: 062307geo

20 ANS: 2

 $\triangle ACB \sim \triangle AED$

REF: 012308geo

21 ANS: 2

If (2) is true, $\angle ACB \cong \angle XYB$ and $\angle CAB \cong \angle YXB$.

REF: 082202geo

22 ANS: 2

 $\triangle ACB \sim \triangle AED$

REF: 061811geo

23 ANS: 2

 $\angle ADE \cong \angle ABC$ and $\angle AED \cong \angle ACB$

REF: 062214geo

24 ANS: 4

REF: 062321geo

25 ANS:

 $\frac{3.75}{5} = \frac{4.5}{6}$ \overline{AB} is parallel to \overline{CD} because \overline{AB} divides the sides proportionately.

39.375 = 39.375

REF: 061627geo

26 ANS:

 $\frac{15}{27} = \frac{20}{36}$ \overline{EF} is parallel to \overline{BC} because \overline{EF} divides the sides proportionately.

540 = 540

REF: 062431geo