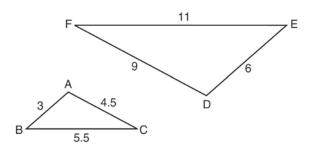
Regents Exam Questions G.SRT.A.2: Compositions of Transformations 2 www.jmap.org

G.SRT.A.2: Compositions of Transformations 2

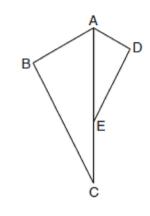
1 In the diagram below, $\triangle DEF$ is the image of $\triangle ABC$ after a clockwise rotation of 180° and a dilation where AB = 3, BC = 5.5, AC = 4.5, DE = 6, FD = 9, and EF = 11.



Which relationship must always be true?

- $1) \quad \frac{m\angle A}{m\angle D} = \frac{1}{2}$
- $2) \quad \frac{m\angle C}{m\angle F} = \frac{2}{1}$
- 3) $\frac{m \angle A}{m \angle C} = \frac{m \angle F}{m \angle D}$
- 4) $\frac{m \angle B}{m \angle E} = \frac{m \angle C}{m \angle F}$

- Name:
- 2 In the diagram below, $\triangle ADE$ is the image of $\triangle ABC$ after a reflection over the line AC followed by a dilation of scale factor $\frac{AE}{AC}$ centered at point A.

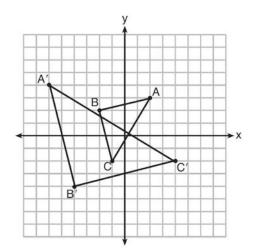


Which statement must be true?

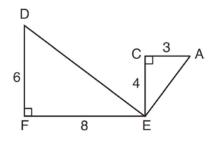
- 1) $m \angle BAC \cong m \angle AED$
- 2) $m \angle ABC \cong m \angle ADE$
- 3) $m \angle DAE \cong \frac{1}{2} m \angle BAC$
- 4) $m \angle ACB \cong \frac{1}{2} m \angle DAB$

G.SRT.A.2: Compositions of Transformations 2 www.jmap.org

3 Which sequence of transformations will map $\triangle ABC$ onto $\triangle A'B'C'$?



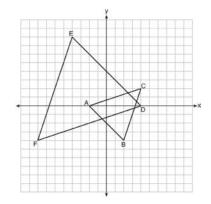
- 1) reflection and translation
- 2) rotation and reflection
- 3) translation and dilation
- 4) dilation and rotation
- 4 Given: $\triangle AEC$, $\triangle DEF$, and $\overline{FE} \perp \overline{CE}$



What is a correct sequence of similarity transformations that shows $\triangle AEC \sim \triangle DEF$?

- 1) a rotation of 180 degrees about point E followed by a horizontal translation
- a counterclockwise rotation of 90 degrees about point *E* followed by a horizontal translation
- a rotation of 180 degrees about point *E* followed by a dilation with a scale factor of 2 centered at point *E*
- a counterclockwise rotation of 90 degrees about point *E* followed by a dilation with a scale factor of 2 centered at point *E*

- Name:
- 5 On the set of axes below, $\triangle ABC$ has vertices at $A(-2,0), B(2,-4), C(4,2), \text{ and } \triangle DEF$ has vertices at D(4,0), E(-4,8), F(-8,-4).

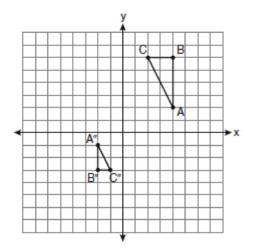


Which sequence of transformations will map $\triangle ABC$ onto $\triangle DEF$?

- 1) a dilation of $\triangle ABC$ by a scale factor of 2 centered at point *A*
- 2) a dilation of $\triangle ABC$ by a scale factor of $\frac{1}{2}$ centered at point *A*
- 3) a dilation of $\triangle ABC$ by a scale factor of 2 centered at the origin, followed by a rotation of 180° about the origin
- 4) a dilation of $\triangle ABC$ by a scale factor of $\frac{1}{2}$ centered at the origin, followed by a rotation of 180° about the origin

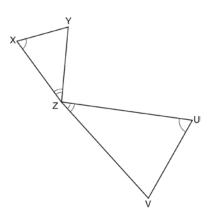
G.SRT.A.2: Compositions of Transformations 2 www.jmap.org

6 After a composition of transformations, the coordinates *A*(4,2), *B*(4,6), and *C*(2,6) become A''(-2,-1), B''(-2,-3), and C''(-1,-3), as shown on the set of axes below.



Which composition of transformations was used?

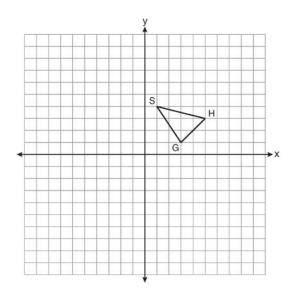
- 1) $R_{180^{\circ}} \circ D_2$
- 2) $R_{90^{\circ}} \circ D_2$
- 3) $D_{\frac{1}{2}} \circ R_{180^{\circ}}$
- 4) $D_{\frac{1}{2}} \circ R_{90^{\circ}}$
- 7 In the diagram below, triangles XYZ and UVZ are drawn such that $\angle X \cong \angle U$ and $\angle XZY \cong \angle UZV$.



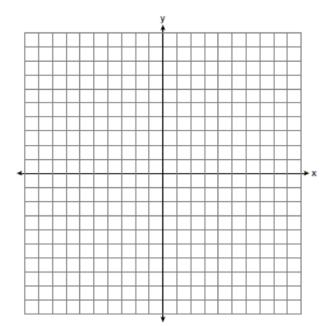
Describe a sequence of similarity transformations that shows $\triangle XYZ$ is similar to $\triangle UVZ$.

Name:

8 As shown on the set of axes below, $\triangle GHS$ has vertices G(3,1), H(5,3), and S(1,4). Graph and state the coordinates of $\triangle G''H''S''$, the image of $\triangle GHS$ after the transformation $T_{-3,1} \circ D_2$.



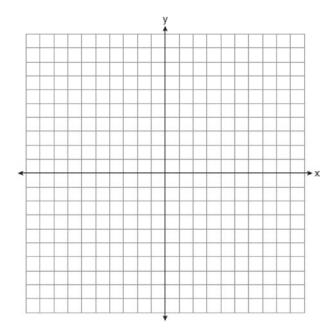
9 Triangle ABC has vertices A(5,1), B(1,4) and C(1,1). State and label the coordinates of the vertices of △A"B"C", the image of △ABC, following the composite transformation T_{1,-1} ∘ D₂. [The use of the set of axes below is optional.]



G.SRT.A.2: Compositions of Transformations 2 www.jmap.org

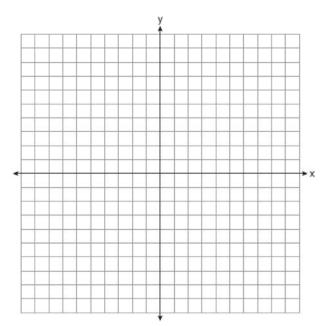
10 The coordinates of the vertices of parallelogram *SWAN* are *S*(2,-2), *W*(-2,-4), *A*(-4,6), and *N*(0,8). State and label the coordinates of parallelogram S''W''A''N'', the image of *SWAN* after the transformation $T_{4,-2} \circ D_{\frac{1}{2}}$. [The use of the set of

axes below is optional.]



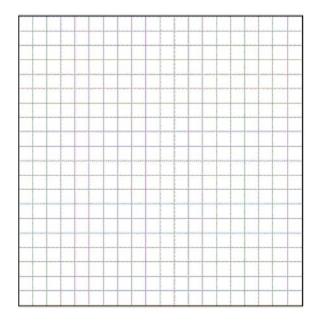
Name:

- 11 Triangle *ABC* has coordinates A(3,-2), B(8,2), and C(5,10).
 - *a* On the grid below, graph and label $\triangle ABC$.
 - b Graph and state the coordinates of $\Delta A'B'C'$, the image of ΔABC after a half-turn (R_{180°) .
 - c Graph and state the coordinates of $\triangle A''B''C''$, the image of $\triangle ABC$ after $(D_2 \circ T_{-5,-2})$.
 - *d* What is the ratio of the area of $\triangle ABC$ to the area of $\triangle A''B''C''$?



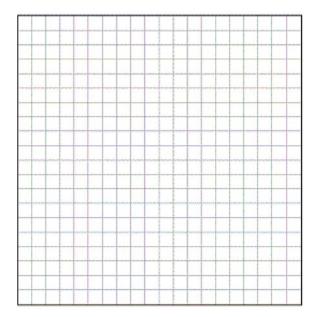
G.SRT.A.2: Compositions of Transformations 2 www.jmap.org

12 The coordinates of the vertices of $\triangle ABC A(1,3)$, B(-2,2) and C(0,-2). On the grid below, graph and label $\triangle A''B''C''$, the result of the composite transformation $D_2 \circ T_{3,-2}$. State the coordinates of A'', B'', and C''.



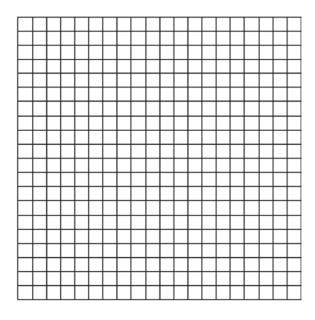
Name:

13 The coordinates of the endpoints of \overline{AB} are A(2,6)and B(4,2). Is the image $\overline{A''B''}$ the same if it is reflected in the *x*-axis, then dilated by $\frac{1}{2}$ as the image is if it is dilated by $\frac{1}{2}$, then reflected in the *x*-axis? Justify your answer. (The use of the accompanying grid is optional.)



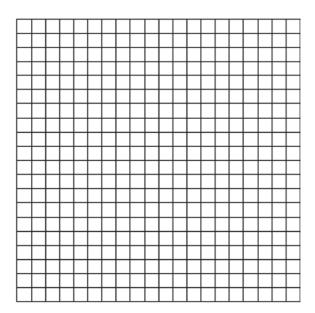
G.SRT.A.2: Compositions of Transformations 2 www.jmap.org

14 Triangle *ABC* has vertices A(1,0), B(6,3), and C(4,5). On the accompanying grid, draw and label $\triangle ABC$. Graph and state the coordinates of $\triangle A'B'C'$, the image of $\triangle ABC$ after the composition $D_2 \circ r_{(0,0)}$.



Name: _____

15 Farmington, New York, has plans for a new triangular park. If plotted on a coordinate grid, the vertices would be A(3,3), B(5,-2), and C(-3,-1). However, a tract of land has become available that would enable the planners to increase the size of the park, which is based on the following transformation of the original triangular park, $R_{270^{\circ}} \circ D_2$. On the grid below, graph and label both the original park $\triangle ABC$ and its image, the new park $\triangle A''B''C''$, following the transformation.

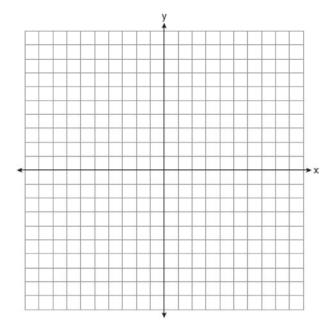


G.SRT.A.2: Compositions of Transformations 2 www.jmap.org

- 16 *a* Triangle *ABC* has coordinates A(0,9), B(-3,0), and C(-6,9). On the graph below, draw and label triangle *ABC*.
 - b Reflect the graph drawn in part a in the origin.
 State the coordinates of A', B', and C', the images of A, B, and C.
 - c Dilate the graph drawn in part b using $D_{\frac{1}{3}}$.

State the coordinates of A'', B'', C'', the images of A', B', and C'.

- d Translate the graph drawn in part c using $T_{(5,4)}$.
 - State the coordinates of A''', B''', and C''', the images of A'', B'', and C''.

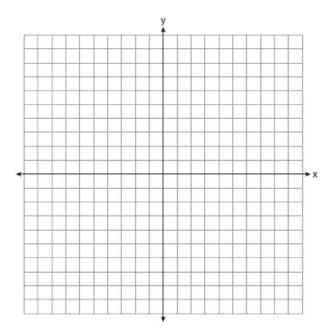


Name: _____

- 17 On the graph below, sketch the triangle formed by points A(3,-3), B(-1,-5), and C(5,-4). On the same set of axes, graph and state the coordinates of $a \ \Delta A'B'C'$, the image of ΔABC after the rotation R_{90° .
 - $b \quad \triangle A''B''C''$, the image of $\triangle A'B'C'$ after the translation $T_{-4,-1}$.
 - $c \quad \triangle A'''B'''C'''$, the image of $\triangle A''B''C''$ after the dilation D_3 .

Is the composite transformation

 $\triangle ABC \rightarrow \triangle A'''B'''C'''$ an isometry? Explain your answer.

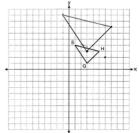


G.SRT.A.2: Compositions of Transformations 2 Answer Section

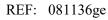
- 1 ANS: 4 REF: 081514geo
- 2 ANS: 2 REF: 011702geo
- 3 ANS: 4 REF: 061608geo
- 4 ANS: 4 REF: 081609geo
- 5 ANS: 3 REF: 011903geo
- 6 ANS: 3 REF: 060908ge
- 7 ANS:

Triangle X YZ is the image of $\triangle XYZ$ after a rotation about point Z such that \overline{ZX} coincides with \overline{ZU} . Since rotations preserve angle measure, \overline{ZY} coincides with \overline{ZV} , and corresponding angles X and Y, after the rotation, remain congruent, so $\overline{XY} \parallel \overline{UV}$. Then, dilate $\triangle X Y Z$ by a scale factor of $\frac{ZU}{ZX}$ with its center at point Z. Since dilations preserve parallelism, \overline{XY} maps onto \overline{UV} . Therefore, $\triangle XYZ \sim \triangle UVZ$.

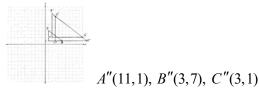
REF: spr1406geo



G''(3,3), H''(7,7), S''(-1,9)

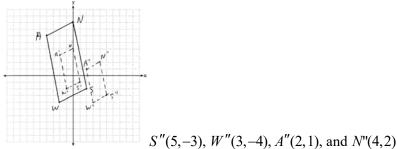


9 ANS:



REF: 011336ge

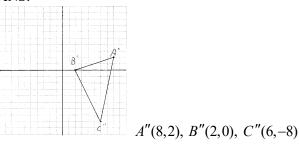
10 ANS:

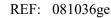


REF: 061335ge

11 ANS: A'(-3,-2), B'(-8,-2), C'(-5,-10); A''(-4,0), B''(6,0), C''(0,16); 1:4

REF: 089437siii





13 ANS:

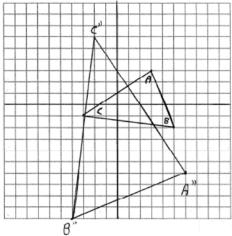
FIFF	T	
		A
		/ /8
		A",
		8"

When the reflection is dilated, the coordinates of the endpoints of $\overline{A'B'}$ are A'(2,-6) and B'(4,-2). When the reflection is dilated, the coordinates of the endpoints of $\overline{A'B''}$ are A''(1,-3) and B''(2,-1). If \overline{AB} is dilated first, the coordinates of the endpoints of $\overline{A'B'}$ are A'(1,3) and B'(2,1). When the dilation is reflected, the coordinates of the endpoints of $\overline{A'B''}$ are A''(1,-3) and B''(2,-1). The images are the same.

REF: 080028a 14 ANS: A'(-2,0), B'(-12,-6), C'(-8,-10)

REF: 068941siii

15 ANS:



REF: 010930b

16 ANS:

A'(0,-9),B'(3,0),C'(6,-9);A''(0,-3),B''(1,0),C''(2,-3);A'''(5,1),B'''(6,4),C'''(7,1)

REF: 069038siii

17 ANS:

A'(3,3), B'(5,-1), C'(4,5); A''(-1,2), B''(1,-2), C''(0,4); A'''(-3,6), B'''(3,-6), C'''(0,12); No, length is not preserved.

REF: 069938siii