G.GPE.B.5: Parallel and Perpendicular Lines 7

1 The graphs of the lines represented by the equations

$$y = \frac{1}{3}x + 7$$
 and $y = -\frac{1}{3}x - 2$ are

- 1) parallel
- horizontal 2)
- 3) perpendicular
- intersecting, but not perpendicular 4)
- 2 Which statement describes the lines whose

equations are
$$y = \frac{1}{3}x + 12$$
 and $6y = 2x + 6$?

- They are segments. 1)
- 2) They are perpendicular to each other.
- 3) They intersect each other.
- They are parallel to each other. 4)
- 3 The lines represented by the equations $y + \frac{1}{2}x = 4$

and 3x + 6y = 12 are

- 1) the same line
- 2) parallel
- 3) perpendicular
- neither parallel nor perpendicular 4)
- The lines 3y + 1 = 6x + 4 and 2y + 1 = x 9 are 4
 - parallel 1)
 - 2) perpendicular
 - 3) the same line
 - 4) neither parallel nor perpendicular

5 The equation of line k is $y = \frac{1}{3}x - 2$. The equation

of line *m* is -2x + 6y = 18. Lines *k* and *m* are

- 1) parallel
- 2) perpendicular
- 3) the same line
- neither parallel nor perpendicular 4)
- 6 The lines represented by the equations 4x + 6y = 6

and
$$y = \frac{2}{3}x - 1$$
 are

- 1) parallel
- 2) the same line
- 3) perpendicular
- 4) intersecting, but *not* perpendicular
- 7 A student wrote the following equations: 3y + 6 = 2x

$$2y - 3x = 6$$

The lines represented by these equations are

- parallel 1)
- 2) the same line
- 3) perpendicular
- intersecting, but not perpendicular 4)
- 8 The two lines represented by the equations below are graphed on a coordinate plane.

$$x + 6y = 12$$

$$3(x-2) = -y - 4$$

Which statement best describes the two lines?

- The lines are parallel. 1)
- 2) The lines are the same line.
- 3) The lines are perpendicular.
- The lines intersect at an angle other than 90°. 4)

Name:

Regents Exam Questions G.GPE.B.5: Parallel and Perpendicular Lines 7 www.jmap.org

9 The equations of lines k, p, and m are given below: k: x + 2y = 6

$$p: 6x + 3y = 12$$

 $m: -x + 2y = 10$

- Which statement is true?
- 1) $p \perp m$
- 2) $m \perp k$
- 3) $k \parallel p$
- 4) $m \parallel k$
- 10 The equations of lines k, m, and n are given below. k: 3y + 6 = 2x

m:
$$3y + 2x + 6 = 0$$

$$n: 2y = 3x + 6$$

Which statement is true?

- 1) $k \parallel m$
- 2) $n \parallel m$
- 3) $m \perp k$
- 4) $m \perp n$
- 11 Determine whether the two lines represented by the equations y = 2x + 3 and 2y + x = 6 are parallel, perpendicular, or neither. Justify your response.
- 12 Two lines are represented by the equations x + 2y = 4 and 4y 2x = 12. Determine whether these lines are parallel, perpendicular, or neither. Justify your answer.

- 13 State whether the lines represented by the equations $y = \frac{1}{2}x - 1$ and $y + 4 = -\frac{1}{2}(x - 2)$ are parallel, perpendicular, or neither. Explain your answer.
- 14 Points A(5,3) and B(7,6) lie on \overrightarrow{AB} . Points C(6,4)and D(9,0) lie on \overrightarrow{CD} . Which statement is true?
 - 1) $\overrightarrow{AB} \parallel \overrightarrow{CD}$
 - 2) $\overrightarrow{AB} \perp \overrightarrow{CD}$
 - 3) \overrightarrow{AB} and \overrightarrow{CD} are the same line.
 - 4) AB and CD intersect, but are not perpendicular.
- 15 Line *P* and line *C* lie on a coordinate plane and have equal slopes. Neither line crosses the second or third quadrant. Lines *P* and *C* must
 - 1) form an angle of 45°
 - 2) be perpendicular
 - 3) be horizontal
 - 4) be vertical

G.GPE.B.5: Parallel and Perpendicular Lines 7 Answer Section

- 1 ANS: 4 REF: 011613ge
- 2 ANS: 4

The slope of the line of the equation of $y = \frac{1}{3}x + 12$ is $\frac{1}{3}$. If you divide each term of the equation 6y = 2x + 6 by 6, the equation is transformed to $y = \frac{2}{6}x + 1$. The slope of this line is $\frac{2}{6}$, or $\frac{1}{3}$, as well. Since the lines have equal slope, they are parallel.

REF: 060722a 3 ANS: 2

$$y + \frac{1}{2}x = 4 \quad 3x + 6y = 12$$

$$y = -\frac{1}{2}x + 4 \quad by = -3x + 12$$

$$y = -\frac{3}{6}x + 2$$

$$m = -\frac{1}{2} \quad y = -\frac{1}{2}x + 2$$

REF: 081014ge
4 ANS: 4

$$3y + 1 = 6x + 4$$
. $2y + 1 = x - 9$
 $3y = 6x + 3$ $2y = x - 10$
 $y = 2x + 1$ $y = \frac{1}{2}x - 5$

REF: fall0822ge 5 ANS: 1 REF: 061113ge 6 ANS: 4 $m = \frac{-A}{B} = \frac{-4}{6} = -\frac{2}{3}$ REF: 011520ge 7 ANS: 4 3y + 6 = 2x 2y - 3x = 6 3y = 2x - 6 2y = 3x + 6 $y = \frac{2}{3}x - 2$ $y = \frac{3}{2}x + 3$ $m = \frac{2}{3}$ $m = \frac{3}{2}$

REF: 081315ge

8 ANS: 4

$$x + 6y = 12 3(x - 2) = -y - 4$$

$$6y = -x + 12 -3(x - 2) = y + 4$$

$$y = -\frac{1}{6}x + 2 m = -3$$

$$m = -\frac{1}{6}$$

REF: 011119ge

9 ANS: 1

$$k: \frac{-A}{B} = \frac{-1}{2} \quad p: \frac{-A}{B} = \frac{-6}{3} = -2 \quad m: \frac{-A}{B} = \frac{-(-1)}{2} = \frac{1}{2}$$

REF: 081426ge

10 ANS: 4

$$k: m = \frac{2}{3} m: m = \frac{-A}{B} = \frac{-2}{3} n: m = \frac{3}{2}$$

REF: 061518ge

11 ANS:

The slope of y = 2x + 3 is 2. The slope of 2y + x = 6 is $\frac{-A}{B} = \frac{-1}{2}$. Since the slopes are opposite reciprocals, the lines are perpendicular.

REF: 011231ge

12 ANS:

The slope of x + 2y = 4 is $m = \frac{-A}{B} = \frac{-1}{2}$. The slope of 4y - 2x = 12 is $\frac{-A}{B} = \frac{2}{4} = \frac{1}{2}$. Since the slopes are neither equal nor opposite reciprocals, the lines are neither parallel nor perpendicular.

REF: 061231ge

13 ANS:

Neither. The slope of $y = \frac{1}{2}x - 1$ is $\frac{1}{2}$. The slope of $y + 4 = -\frac{1}{2}(x - 2)$ is $-\frac{1}{2}$. The slopes are neither the same nor opposite reciprocals.

REF: 011433ge

14 ANS: 4

$$m_{AB}^{\leftarrow} = \frac{6-3}{7-5} = \frac{3}{2}. \ m_{CD}^{\leftarrow} = \frac{4-0}{6-9} = \frac{4}{-3}$$

REF: 061318ge

15 ANS: 4

Since line P and line C extend through infinity, unless they are vertical, they would eventually cross the second or third quadrant.

REF: 010309a