G.GPE.B.5: Parallel and Perpendicular Lines 5 www.jmap.org

G.GPE.B.5: Parallel and Perpendicular Lines 5

- 1 The slope of line ℓ is $-\frac{1}{3}$. What is an equation of a line that is perpendicular to line ℓ ?
 - 1) $y+2=\frac{1}{3}x$
 - 2) -2x + 6 = 6y
 - 3) 9x 3y = 27
 - 4) 3x + y = 0
- 2 Which equation represents a line that is perpendicular to the line represented by

$$y = \frac{2}{3}x + 1?$$

- 1) 3x + 2y = 12
- 2) 3x 2y = 12
- 3) $y = \frac{3}{2}x + 2$
- 4) $y = -\frac{2}{3}x + 4$
- 3 Which equation represents a line that is perpendicular to the line whose equation is y - 3x = 4?
 - 1) $y = -\frac{1}{3}x 4$
 - 2) $y = \frac{1}{3}x + 4$
 - 3) y = -3x + 4
 - 4) y = 3x 4
- 4 Which equation represents a line that is perpendicular to the line whose equation is -2y = 3x + 7?
 - 1) y = x + 7
 - 2) 2y = 3x 3
 - 3) $y = \frac{2}{3}x 3$
 - 4) $y = \frac{3}{2}x 3$

- 5 Which equation represents a line perpendicular to the line whose equation is 2x + 3y = 12?
 - 1) 6y = -4x + 12
 - 2) 2y = 3x + 6
 - 3) 2y = -3x + 6
 - 4) 3y = -2x + 12
- 6 Which equation represents a line that is perpendicular to the line represented by 2x - y = 7?
 - 1) $y = -\frac{1}{2}x + 6$
 - 2) $y = \frac{1}{2}x + 6$
 - 3) y = -2x + 6
 - 4) y = 2x + 6
- 7 Which line is perpendicular to the line whose equation is 5y + 6 = -3x?
 - 1) $y = -\frac{5}{3}x + 7$
 - 2) $y = \frac{5}{3}x + 7$
 - 3) $y = -\frac{3}{5}x + 7$
 - 4) $y = \frac{3}{5}x + 7$
- 8 What is an equation of a line that is perpendicular to the line whose equation is 2y + 3x = 1?
 - 1) $y = \frac{2}{3}x + \frac{5}{2}$
 - 2) $y = \frac{3}{2}x + 2$
 - 3) $y = -\frac{2}{3}x + 1$
 - 4) $y = -\frac{3}{2}x + \frac{1}{2}$
- 9 Given two lines whose equations are 3x + y 8 = 0and -2x + by + 9 = 0, determine the value of b such that the two lines will be perpendicular.

G.GPE.B.5: Parallel and Perpendicular Lines 5 Answer Section

1 ANS: 3

The slope of 9x - 3y = 27 is $m = \frac{-A}{B} = \frac{-9}{-3} = 3$, which is the opposite reciprocal of $-\frac{1}{3}$.

REF: 081225ge

2 ANS: 1

The slope of 3x + 2y = 12 is $-\frac{3}{2}$, which is the opposite reciprocal of $\frac{2}{3}$.

REF: 081811geo

3 ANS: 1

$$y = 3x + 4, m = 3, m_{\perp} = -\frac{1}{3}$$

REF: 012405geo

4 ANS: 3

Divide the equation -2y = 3x + 7 by -2 to transform to the slope intercept form, and note that $m = -\frac{3}{2}$. Perpendicular lines have slope that are the opposite and reciprocal of each other. The slope of $y = \frac{2}{3}x - 3$ is $\frac{2}{3}$.

REF: 060528a

5 ANS: 2

The slope of 2x + 3y = 12 is $-\frac{A}{B} = -\frac{2}{3}$. The slope of a perpendicular line is $\frac{3}{2}$. Rewritten in slope intercept form, (2) becomes $y = \frac{3}{2}x + 3$.

REF: 060926ge

6 ANS: 1

$$m = \frac{-A}{B} = \frac{-2}{-1} = 2$$

$$m_{\perp} = -\frac{1}{2}$$

REF: 061509geo

7 ANS: 2

Transform the equation 5y + 6 = -3x to 3x + 5y = -6. $m = -\frac{A}{B} = -\frac{3}{5}$. The slope of $y = \frac{5}{3}x + 7$ is $\frac{5}{3}$.

REF: 080630a

8 ANS: 1

$$m = \frac{-A}{B} = \frac{-3}{2} \quad m_{\perp} = \frac{2}{3}$$

REF: 081908geo

9 ANS:

6. The slope of the line 3x + y - 8 = 0 is $m = -\frac{A}{B} = -\frac{3}{1} = -3$. The slope of a line perpendicular to

3x + y - 8 = 0 would have a slope the opposite and reciprocal of -3, or $\frac{1}{3}$. $\frac{1}{3} = -\frac{-2}{b}$. b = 6

REF: fall9925b