G.GPE.A.3: Other Systems

1 Which ordered pair is in the solution set of the system of equations shown below?

$$y^2 - x^2 + 32 = 0$$

$$3y - x = 0$$

- 1) (2,6)
- 2) (3,1)
- (-1,-3)
- 4) (-6,-2)
- 2 Which ordered pair is a solution to the system below?

$$x^2 - 4y^2 = 16$$

$$y = x - 4$$

- 1) (0,-4)
- 2) (4,0)
- 3) (6,2)
- 4) (2,-2)
- 3 What is the total number of points of intersection of the graphs of the equations $2x^2 y^2 = 8$ and y = x + 2?
 - 1) 1
 - 2) 2
 - 3) 3
 - 4) 0
- 4 Solve the following system of equations algebraically: $9x^2 + y^2 = 9$

$$3x - y = 3$$

- 5 Solve $\begin{cases} x^2 y^2 = 144 \\ x y = 8 \end{cases}$
- 6 Solve the following systems of equations algebraically: $x^2 2y^2 = 23$

$$x - 2y = 7$$

7 On the accompanying set of axes, graph the parabola whose equation is $y = x^2 - 2x - 8$ over the interval $-3 \le x \le 5$ and graph the circle whose center is at (1,-5) and whose radius is 4. Using your graphs, determine how many points of intersection the two graphs have.

Regents Exam Questions G.GPE.A.3: Other Systems www.jmap.org

8 Two circles whose equations are $(x-3)^2 + (y-5)^2 = 25$ and $(x-7)^2 + (y-5)^2 = 9$ intersect in two points. What is the equation of the line passing through these two points? [The use of the accompanying grid is optional.]

	П	П			П			П					П	
		П		П			П	П	П				П	П
		П		П				П			П		П	Г

9 On the accompanying grid, graph the following system of equations over the interval $-6 \le x \le 6$.

$$x^2 + y^2 = 25$$

$$xy = 12$$

State the points of intersection.

G.GPE.A.3: Other Systems Answer Section

1 ANS: 4

$$x = 3y$$
. $y^{2} - (3y)^{2} + 32 = 0$. $x = 3(-2) = -6$
 $y^{2} - 9y^{2} = -32$
 $-8y^{2} = -32$
 $y^{2} = 4$
 $y = \pm 2$

REF: 061312a2

ANS: 2

$$x^2 - 4(x - 4)^2 = 16$$
 $y = (4) - 4 = 0$
 $x^2 - 4(x^2 - 8x + 16) = 16$ $y = \left(\frac{20}{3}\right) - 4 = \frac{8}{3}$
 $x^2 - 4x^2 + 32x - 64 = 16$
 $3x^2 - 32x + 80 = 0$
 $(3x - 20)(x - 4) = 0$
 $x = 4, \frac{20}{3}$

REF: 011704a2

$$2x^{2} - (x+2)^{2} = 8$$

$$2x^{2} - (x^{2} + 4x + 4) - 8 = 0$$

$$x^{2} - 4x - 12 = 0$$

$$(x-6)(x+2) = 0$$

$$x = 6,-2$$

REF: 011609a2

4 ANS:

$$9x^{2} + (3x - 3)^{2} = 9$$

$$9x^{2} + 9x^{2} - 18x + 9 = 9$$

$$18x^{2} - 18x = 0$$

$$x^{2} - x = 0$$

$$x(x - 1) = 0$$

$$x = 0 \text{ and } x = 1$$

$$y = 3x - 3$$

$$y = 3x - 3$$

$$y = 3(0) - 3. \quad y = 3(1) - 3$$

$$y = -3$$

REF: 060627b

5 ANS: (13,5)

REF: 010604al

6 ANS:

$$(-19,-13), (5,-1). \quad x = 2y + 7. \quad (2y + 7)^2 - 2y^2 = 23$$

$$4y^2 + y + 14y + 14y + 49 - 2y^2 = 23$$

$$2y^2 + 28y + 26 = 0$$

$$y^2 + 14y + 13 = 0$$

$$(y + 13)(y + 1) = 0$$

$$y = -13,-1$$

$$x = 2y + 7 = 2(-1) + 7 = 5$$

REF: 061032b

7 ANS:

REF: 010839a

8 ANS:

$$(x-3)^2 - 25 = -(y-5)^2$$

$$(x-7)^2 - 9 = -(y-5)^2 \qquad (7-7)^2 + (y-5)^2 = 9$$

$$(y-5)^2 = 9$$

$$x = 7. \qquad (x-3)^2 - 25 = (x-7)^2 - 9 \qquad y-5 = \pm 3 \qquad . \text{ The line } x = 7 \text{ goes through the}$$

$$x^2 - 6x + 9 - 25 = x^2 - 14x + 49 - 9 \qquad y = 5 \pm 3$$

$$8x = 56 \qquad y = 8 \text{ and } 2$$

$$x = 7$$

points of intersection, (7,2) and (7,8).

REF: 080732b

9 ANS:

(3,4),(4,3),(-3,-4),(-4,-3)

REF: 010932b