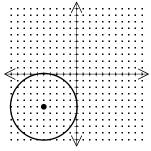

1. A small messenger company can only deliver in a small part of the city. Write an equation for the boundary where the company delivers,


[A]
$$(x-1)^2 + (y-3)^2 = 49$$
; $r = 7$ blocks

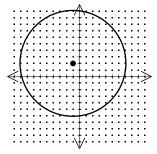
[B]
$$(x-1)^2 + (y-3)^2 = 49$$
; $r = 49$ blocks

[C]
$$(x+3)^2 + (y+1)^2 = 98$$
; $r = 49$ blocks

[D]
$$(x+3)^2 + (y+1)^2 = 98$$
; $r = 7$ blocks

2. A small messenger company can only deliver in a small part of the city. Write an equation for the boundary where the company delivers, and find its radius.

[A]
$$(x-5)^2 + (y-5)^2 = 50$$
; $r = 25$ blocks

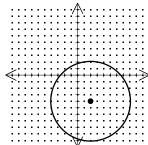

[B]
$$(x-5)^2 + (y-5)^2 = 50$$
; $r = 5$ blocks

[C]
$$(x+5)^2 + (y+5)^2 = 25$$
; $r = 5$ blocks

[D]
$$(x+5)^2 + (y+5)^2 = 25$$
; $r = 25$ blocks

NAME:

3. A small messenger company can only deliver in a small part of the city. Write an equation for the boundary where the company delivers, and find its radius.


[A]
$$(x+2)^2 + (y-1)^2 = 128$$
; $r = 64$ blocks

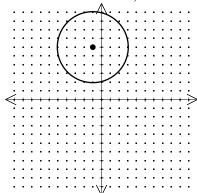
[B]
$$(x+2)^2 + (y-1)^2 = 128$$
; $r = 8$ blocks

[C]
$$(x+1)^2 + (y-2)^2 = 64$$
; $r = 64$ blocks

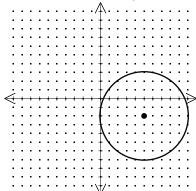
[D]
$$(x+1)^2 + (y-2)^2 = 64$$
; $r = 8$ blocks

4. A small messenger company can only deliver in a small part of the city. Write an equation for the boundary where the company delivers, and find its radius.

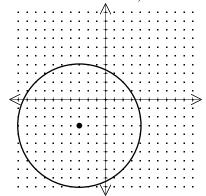
[A]
$$(x-2)^2 + (y+4)^2 = 36$$
; $r = 6$ blocks

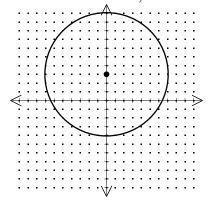

[B]
$$(x-2)^2 + (y+4)^2 = 36$$
; $r = 36$ blocks

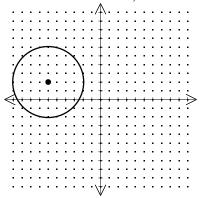
[C]
$$(x-4)^2 + (y+2)^2 = 72$$
; $r = 36$ blocks

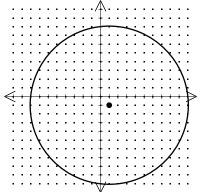

[D]
$$(x-4)^2 + (y+2)^2 = 72$$
; $r = 6$ blocks

NAME:


5. A certain low-watt radio station is able to be heard in a small part of the city. Write an equation for the boundary where the radio station can be heard, and find its radius.


8. A certain low-watt radio station is able to be heard in a small part of the city. Write an equation for the boundary where the radio station can be heard, and find its radius.


6. A certain low-watt radio station is able to be heard in a small part of the city. Write an equation for the boundary where the radio station can be heard, and find its radius.


9. A certain low-watt radio station is able to be heard in a small part of the city. Write an equation for the boundary where the radio station can be heard, and find its radius.

7. A certain low-watt radio station is able to be heard in a small part of the city. Write an equation for the boundary where the radio station can be heard, and find its radius.

10. A certain low-watt radio station is able to be heard in a small part of the city. Write an equation for the boundary where the radio station can be heard, and find its radius.

- [1] A
- [2] C
- [3] D
- [4] A
- [5] $(x+1)^2 + (y-6)^2 = 16$; radius = 4 blocks
- [6] $(x+3)^2 + (y+3)^2 = 49$; radius = 7 blocks
- [7] $(x+6)^2 + (y-2)^2 = 16$; radius = 4 blocks
- [8] $(x-5)^2 + (y+2)^2 = 25$; radius = 5 blocks
- [9] $(x)^2 + (y-3)^2 = 49$; radius = 7 blocks
- [10] $(x-1)^2 + (y+1)^2 = 81$; radius = 9 blocks