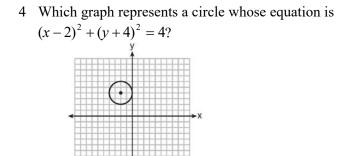
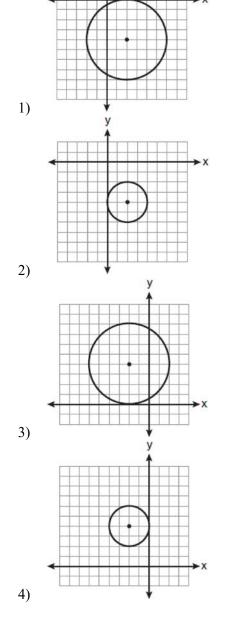
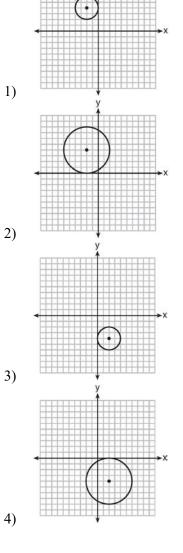

G.GPE.A.1: Equations of Circles 6

1 Which graph represents a circle with the equation

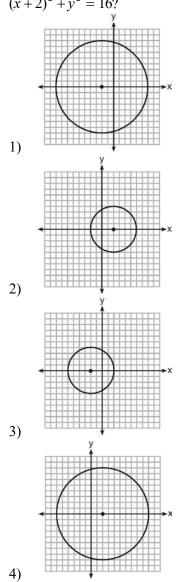


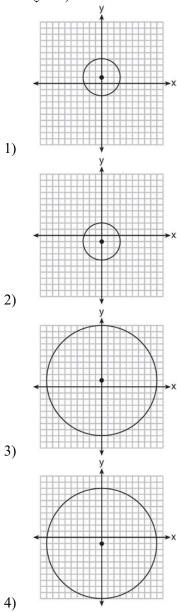
2 Which graph represents a circle with the equation $(x-3)^2 + (y+1)^2 = 4?$




Regents Exam Questions G.GPE.A.1: Equations of Circles 6 www.jmap.org

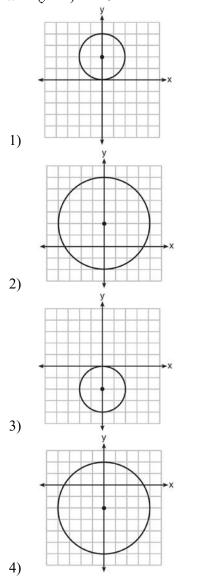
3 The equation of a circle is $(x-2)^2 + (y+4)^2 = 4$. Which diagram is the graph of the circle?

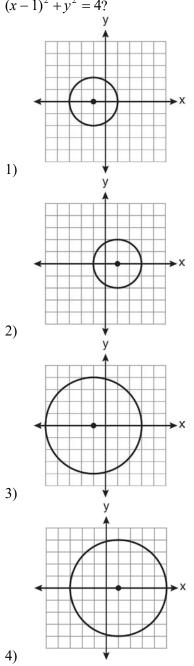

Name:



Regents Exam Questions G.GPE.A.1: Equations of Circles 6 www.jmap.org

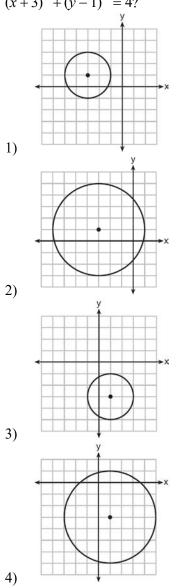
5 Which graph represents a circle whose equation is $(x+2)^2 + y^2 = 16?$

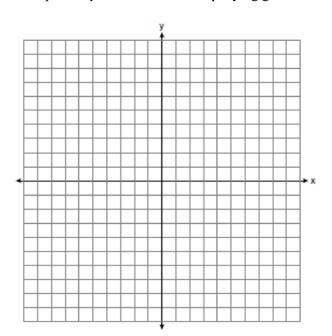

6 Which graph represents a circle whose equation is $x^{2} + (y-1)^{2} = 9?$


4

Regents Exam Questions G.GPE.A.1: Equations of Circles 6 www.jmap.org

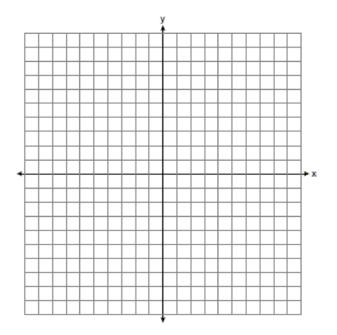
7 Which graph represents a circle whose equation is $x^{2} + (y-2)^{2} = 4$?


8 Which graph represents the graph of the equation $(x-1)^2 + y^2 = 4?$

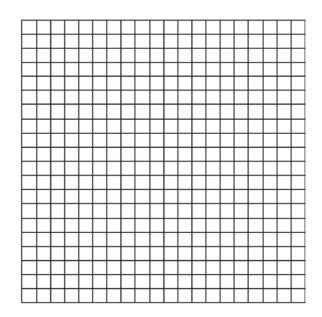

Name:

Regents Exam Questions G.GPE.A.1: Equations of Circles 6 www.jmap.org

9 Which graph represents a circle whose equation is $(x+3)^2 + (y-1)^2 = 4?$



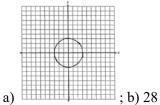
10 John uses the equation $x^2 + y^2 = 9$ to represent the shape of a garden on graph paper. *a* Graph $x^2 + y^2 = 9$ on the accompanying grid.



b What is the area of the garden to the *nearest* square unit?

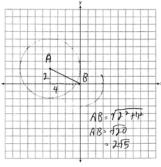
11 On the set of axes below, graph and label circle A whose equation is $(x + 4)^2 + (y - 2)^2 = 16$ and circle B whose equation is $x^2 + y^2 = 9$. Determine, in simplest radical form, the length of the line segment with endpoints at the centers of circles A and B.

12 For a carnival game, John is painting two circles, V and M, on a square dartboard. a On the accompanying grid, draw and label circle V, represented by the equation $x^2 + y^2 = 25$, and circle M, represented by the equation $(x-8)^2 + (y+6)^2 = 4$.


b A point, (x, y), is randomly selected such that $-10 \le x \le 10$ and $-10 \le y \le 10$. What is the probability that point (x, y) lies outside both circle *V* and circle *M*?

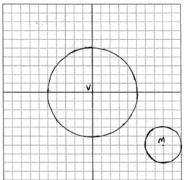
ID: A

G.GPE.A.1: Equations of Circles 6 Answer Section


1	ANS:	1	REF:	060920ge
2	ANS:	2	REF:	011125ge
3	ANS:	2	REF:	011020ge
4	ANS:	3	REF:	011518ge
5	ANS:	3	REF:	061220ge
6	ANS:	1	REF:	061325ge
7	ANS:	1	REF:	081324ge
8	ANS:	2	REF:	081425ge
9	ANS:	1	REF:	011614ge

10 ANS:

REF: 010133a


11 ANS:

REF: 081537ge

ID: A

12 ANS:

0.77. The dartboard is 20 x 20, with area of 400. $A = \pi r^2$, so the area of circle *V* is 25π and of circle *M* is 4π . The percentage of the area of the dartboard outside both circles is $\frac{400 - (25\pi + 4\pi)}{400} \cong 0.77$

REF: 060334b