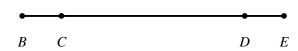
NAME:____

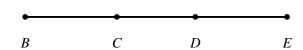
1. Write a two-column proof of the following.

Given: BC = DEProve: BD = CE

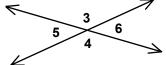


2. Write a two-column proof of the following.

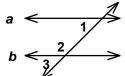
Given: BD = CEProve: BC = DE



3. Write a convincing argument that $\angle 3 \cong \angle 4$.



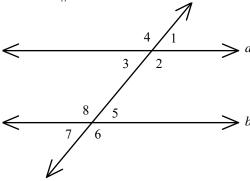
4. Write a paragraph proof of Theorem 7.2: If two parallel lines are cut by a transversal, then the pairs of same-side interior angles are supplementary.



5. Write a two-column proof of the following.

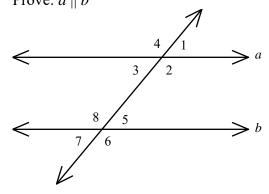
Given: $\angle 8$ is supplementary to $\angle 3$

Prove: $a \parallel b$



6. Write a two-column proof of the following.

Given: $\angle 7 \cong \angle 3$ Prove: $a \parallel b$



$$1. BC = DE$$

2. BC + CD = CD + DE

$$3. BD = BC + CD$$

$$CE = CD + DE$$

1. Given

2. Addition Property of Equality

2. Segment Addition Postulate

[1]
$$4. BD = CE$$

4. Substitution

1. Given

$$1. BD = CE$$

$$3. BD = BC + CD$$

$$CE = CD + DE$$

$$2. BC + CD = CD + DE$$

[2]
$$4. BC = DE$$

4. Subtraction Property of Equality

Answers may vary. Sample: by the Angle Addition Postulate, $m \angle 3 + m \angle 5 = 180$ and $m \angle 4 + m \angle 5 = 180$. By substitution, $m \angle 3 + m \angle 5 = m \angle 4 + m \angle 5$. Subtract $m \angle 5$ from both sides, and [3] you get $m \angle 4 = m \angle 3$, or $\angle 3 \cong \angle 4$.

We are given $a \parallel b$. $\angle 3$ and $\angle 2$ are supplementary, so $m \angle 3 + m \angle 2 = 180$. $m \angle 1 = m \angle 3$ by the corresponding angles postulate, so $m \angle 1 + m \angle 2 = 180$, by substitution. By definition, $\angle 1$ and $\angle 2$ are [4] supplementary.

- 1. $\angle 8$ is supp. to $\angle 3 \mid 1$. Given
- $2. a \parallel b$
- 2. If two lines are cut by a transversal so that interior \angle s on the same side are supp., then the lines are ||.

[5]

[6]

- $\begin{array}{c|c}
 1. \ \angle 7 \cong \angle 3 \\
 2. \ a \parallel b
 \end{array}$ 1. Given
- 2. If two lines are cut by a transversal

so that corresponding $\angle s$ are \cong ,

then the lines are ||.