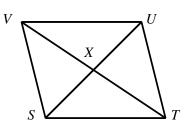
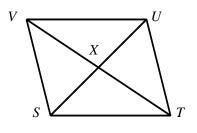
Geometry Practice G.CO.C.11: Quadrilateral Proofs www.jmap.org

NAME:_____

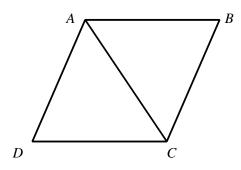
1. Given: $\overline{VU} \cong \overline{ST}$ and $\overline{SV} \cong \overline{TU}$ Prove: VX = XT



2. Given: $\overline{SV} \cong \overline{TU}$ and $\overline{SV} \parallel \overline{TU}$ Prove: VX = XT



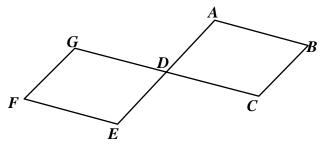
3. Given: *ABCD* is a rhombus. Prove: \triangle *BCA* \cong \triangle *DAC*



Geometry Practice G.CO.C.11: Quadrilateral Proofs www.jmap.org

NAME:

4. Given that *ABCD* and *EFGD* are parallelograms and that *D* is the midpoint of \overline{CG} and \overline{AE} , prove that *ABCD* and *EFGD* are congruent.



- 5. Theorem 9-6 states that if one pair of opposite sides of a quadrilateral is congruent and parallel, the quadrilateral is a parallelogram. This condition is met in two quadrilaterals. \overline{AB} is parallel and congruent to \overline{DC} in ABCD, \overline{EF} is parallel and congruent to \overline{HG} in EFGH, and $\overline{AB} \cong \overline{EF}$. Are the two quadrilaterals congruent?
- 6. To find the formula for the area of a trapezoid, you can rotate the trapezoid and place the image next to the original to make a parallelogram. Write a flow proof to show that the figure made from the two trapezoids is a parallelogram.

Geometry Practice G.CO.C.11: Quadrilateral Proofs www.jmap.org

	1. $\overline{VU} \cong \overline{ST}$ and $\overline{SV} \cong \overline{TU}$	1. Given
	2. <i>STUV</i> is a parallelogram	2. If both pairs of opp. sides of a quad.
		are \cong , then the quad is a parallelogram.
	3. $VX = XT$	3. The diagonals of a
[1]		parallelogram bisect each other.
	1. $\overline{SV} \cong \overline{TU}$ and $\overline{SV} \parallel \overline{TU}$	1. Given
	2. <i>STUV</i> is a parallelogram	2. If one pair of opp. sides of a quad. are
		both \parallel and \cong , then the quad is a parallelogram.
	3. $VX = XT$	3. The diagonals of a
[2]		parallelogram bisect each other.
	1. <i>ABCD</i> is a rhombus	1. Given
	2. <i>ABCD</i> is a a parallelogram	2. Definition of a rhombus
	3. $\triangle BCA \cong \triangle DAC$	3. The diagonals of a parallelogram form
[3]		two congruent triangles.

Check students' work. They should use the def. of midpoint and opposite sides of a parallelogram are \cong to show that $\overline{AD} \cong \overline{DE} \cong \overline{FG} \cong \overline{BC}$ and $\overline{GD} \cong \overline{DC} \cong \overline{AB} \cong \overline{EF}$. Then, using the vert. \angle thm. and opposite \angle 's of a parallelogram are \cong , show that $\angle GDE \cong \angle ADC \cong \angle B \cong \angle F$. $\angle G \cong \angle E \cong \angle C \cong \angle A$, since opposite angles are = and add to 360° in a parallelogram. Therefore [4] $ABCD \cong EFGD$ because their corresponding sides and corresponding \angle 's \cong .

[5] No, the other two sides are not necessarily congruent. Check students' examples.

Check students' work. They should show that in trapezoid *ABCD*, \overline{AB} and \overline{CD} are parallel, so $\angle A$ and $\angle D$ are supplementary. In the image *A'B'C'D'*, $\angle A \cong \angle A'$, so $\angle A'$ and $\angle D$ are also supplementary. Hence, $\overline{AD} \parallel \overline{A'D'}$. Similarly, prove $\overline{AD'} \parallel \overline{A'D}$, so *AD'A'D* is a parallelogram.

