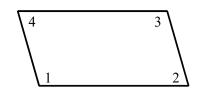
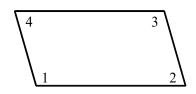
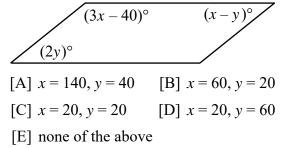

Geometry Practice G.CO.C.11: Parallelograms 1 www.jmap.org

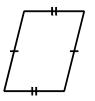

1. Based on the markings, determine if the figure is a parallelogram. If so, justify your answer.

2. Find the measures of the numbered angles in the parallelogram.

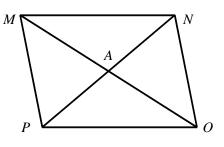

- [A] $m \angle 1 = 28$; $m \angle 2 = 30$; $m \angle 3 = 122$
- [B] $m \angle 1 = 30$; $m \angle 2 = 28$; $m \angle 3 = 122$
- [C] $m \angle 1 = 15$; $m \angle 2 = 61$; $m \angle 3 = 150$
- [D] $m \angle 1 = 30; m \angle 2 = 15; m \angle 3 = 150$
- 3. If $m \angle 1 = m \angle 3 = 11x$, $m \angle 2 = 3x 30$, and $m \angle 4 = x$, find the value of x.


[A] 15 [B] 75 [C] 30 [D] 150

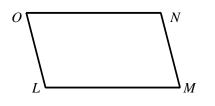
NAME:


4. If $m \angle 1 = m \angle 3 = 5x$, $m \angle 2 = 3x - 60$, and $m \angle 4 = x$, find the value of *x*.

5. Determine the values of *x* and *y* for which *ABCD* is a parallelogram.

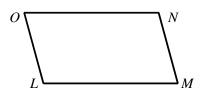


6. Based on the markings, determine if the figure is a parallelogram. If so, justify your answer.



Geometry Practice G.CO.C.11: Parallelograms 1 www.jmap.org

7. Find AM in the parallelogram if PN = 7 and AO = 3.



8. If ON = 8x - 2, LM = 7x + 7, NM = x - 4, and OL = 2y + 3, find the values of x and y for which *LMNO* must be a parallelogram.

[A]
$$x = 9; y = 1$$
 [B] $x = -\frac{1}{5}; y = -1$
[C] $x = 9; y = -1$ [D] $x = 5; y = -1$

9. If ON = 7x - 5, LM = 6x + 4, NM = x + 6, and OL = 8y + 3, find the values of x and y for which *LMNO* must be a parallelogram.

NAME:

- 10. Compare the quantity in Column A with the quantity in Column B. Given: AC > BC in parallelogram ABCD. <u>Column A</u> <u>Column B</u> $m \angle A$ $m \angle B$
 - [A] The quantity in Column A is greater.
 - [B] The quantity in Column B is greater.
 - [C] The two quantities are equal.
 - [D] The relationship cannot be determined on the basis of the information supplied.
- 11. Graph the points A(-1, 2), B(1, 8), and C(5, 2). Find all possible coordinates of the point *D* so that *ABCD* is a parallelogram.
- 12. Points A(2, 3), B(7, 3), and C(4, -1) are three vertices of a parallelogram. Theorem 9-3 states that the diagonals of a parallelogram bisect each other. Use this to find the coordinates of the fourth vertex of the parallelogram *ABCD*.

Geometry Practice G.CO.C.11: Parallelograms 1 Page 1 www.jmap.org

[1]	yes; a pair of opposite sides are congruent and parallel
[2]	<u>B</u>
[3]	<u>A</u>
[4]	30
[5]	<u>B</u>
[6]	yes; both pairs of opposite sides are congruent
[7]	3
[8]	<u>A</u>
[9]	$x = 9; y = \frac{3}{2}$
[10]	<u>D</u>
[11]	(3, -4), (7, 8), and (-5, 8)
	Since the diagonals of a parallelogram bisect each other, D has to be a point (x, y) so that
	(3, 1), the midpoint of AC , is also the midpoint of \overline{BD} . Using the midpoint
	$f_{\text{constant}} = D_{\text{constant}} + (1 - 1)$

[12] formula, D is the point (-1, -1).