Regents Exam Questions G.CO.C.11: Parallelograms 1 www.jmap.org

G.CO.C.11: Parallelograms 1

1 In quadrilateral *BLUE* shown below, $\overline{BE} \cong \overline{UL}$.

Which information would be sufficient to prove quadrilateral *BLUE* is a parallelogram?

- 1) $BL \parallel EU$
- 2) $\overline{LU} \parallel \overline{BE}$
- 3) $\overline{BE} \cong \overline{BL}$
- 4) $\overline{LU} \cong \overline{EU}$
- 2 In the diagram below, lines k and ℓ intersect lines m and n at points A, B, C, and D.

Which statement is sufficient to prove *ABCD* is a parallelogram?

- 1) $\angle 1 \cong \angle 3$
- 2) $\angle 4 \cong \angle 7$
- 3) $\angle 2 \cong \angle 5$ and $\angle 5 \cong \angle 7$
- 4) $\angle 1 \cong \angle 3$ and $\angle 3 \cong \angle 4$

3 In the diagram below, lines l and m intersect lines n and p to create the shaded quadrilateral as shown.

Which congruence statement would be sufficient to prove the quadrilateral is a parallelogram?

- 1) $\angle 1 \cong \angle 6$ and $\angle 9 \cong \angle 14$
- 2) $\angle 5 \cong \angle 10 \text{ and } \angle 6 \cong \angle 9$
- 3) $\angle 5 \cong \angle 7$ and $\angle 10 \cong \angle 15$
- 4) $\angle 6 \cong \angle 9$ and $\angle 9 \cong \angle 11$
- 4 Quadrilateral *ABCD* with diagonals \overline{AC} and \overline{BD} is shown in the diagram below.

Which information is *not* enough to prove *ABCD* is a parallelogram?

- 1) $\overline{AB} \cong \overline{CD}$ and $\overline{AB} \parallel \overline{DC}$
- 2) $\overline{AB} \cong \overline{CD}$ and $\overline{BC} \cong \overline{DA}$
- 3) $\overline{AB} \cong \overline{CD}$ and $\overline{BC} \parallel \overline{AD}$
- 4) $\overline{AB} \parallel \overline{DC}$ and $\overline{BC} \parallel \overline{AD}$

Name:

Regents Exam Questions G.CO.C.11: Parallelograms 1 www.jmap.org

5 In the diagram below of parallelogram *RSTV*, diagonals \overline{SV} and \overline{RT} intersect at *E*.

Which statement is always true?

- 1) $SR \cong RV$
- 2) $\overline{RT} \cong \overline{SV}$
- 3) $\overline{SE} \cong \overline{RE}$
- 4) $\overline{RE} \cong \overline{TE}$
- 6 Parallelogram *HAND* is drawn below with diagonals \overline{HN} and \overline{AD} intersecting at *S*.

Which statement is always true?

- 1) $AN = \frac{1}{2}AD$ 2) $AS = \frac{1}{2}AD$
- 3) $\angle AHS \cong \angle ANS$
- 4) $\angle HDS \cong \angle NDS$
- 7 Which statement about parallelograms is always true?
 - 1) The diagonals are congruent.
 - 2) The diagonals bisect each other.
 - 3) The diagonals are perpendicular.
 - 4) The diagonals bisect their respective angles.

- 8 A quadrilateral must be a parallelogram if
 - 1) one pair of sides is parallel and one pair of angles is congruent
 - 2) one pair of sides is congruent and one pair of angles is congruent
 - 3) one pair of sides is both parallel and congruent
 - 4) the diagonals are congruent
- 9 Quadrilateral *ABCD* has diagonals *AC* and *BD*. Which information is *not* sufficient to prove *ABCD* is a parallelogram?
 - 1) AC and BD bisect each other.
 - 2) $\overline{AB} \cong \overline{CD}$ and $\overline{BC} \cong \overline{AD}$
 - 3) $\overline{AB} \cong \overline{CD}$ and $\overline{AB} \parallel \overline{CD}$
 - 4) $\overline{AB} \cong \overline{CD}$ and $\overline{BC} \parallel \overline{AD}$
- 10 Quadrilateral *BEST* has diagonals that intersect at point *D*. Which statement would *not* be sufficient to prove quadrilateral *BEST* is a parallelogram?
 - 1) $\overline{BD} \cong \overline{SD}$ and $\overline{ED} \cong \overline{TD}$
 - 2) $\overline{BE} \cong \overline{ST}$ and $\overline{ES} \cong \overline{TB}$
 - 3) $\overline{ES} \cong \overline{TB}$ and $\overline{BE} \parallel \overline{TS}$
 - 4) $\overline{ES} \parallel \overline{BT}$ and $\overline{BE} \parallel \overline{TS}$
- 11 In quadrilateral QRST, diagonals \overline{QS} and \overline{RT} intersect at M. Which statement would always prove quadrilateral QRST is a parallelogram?
 - 1) $\angle TQR$ and $\angle QRS$ are supplementary.
 - 2) $QM \cong SM$ and $QT \cong RS$
 - 3) $\overline{QR} \cong \overline{TS}$ and $\overline{QT} \cong \overline{RS}$
 - 4) $\overline{QR} \cong \overline{TS}$ and $\overline{QT} \parallel \overline{RS}$
- 12 Quadrilateral *MATH* has both pairs of opposite sides congruent and parallel. Which statement about quadrilateral *MATH* is always true?
 - 1) $MT \cong AH$
 - 2) $\overline{MT} \perp \overline{AH}$
 - 3) $\angle MHT \cong \angle ATH$
 - 4) $\angle MAT \cong \angle MHT$
- 13 In parallelogram *ABCD* with $AC \perp BD$, AC = 12and BD = 16. What is the perimeter of *ABCD*?
 - 1) 10
 - 2) 24
 - 3) 40
 - 4) 56

Name:

G.CO.C.11: Parallelograms 1 Answer Section

- 1 ANS: 2 REF: 061720geo
- 2 ANS: 3

Therefore $\angle 2 \cong \angle 7$. Since opposite angles are congruent, *ABCD* is a parallelogram.

REF: 062209geo

3 ANS: 4

 $\angle 6$ and $\angle 9$ are alternate interior angles; since congruent, $\ell \parallel m$. $\angle 9$ and $\angle 11$ are corresponding angles; since congruent, $n \parallel p$. Both pairs of opposite sides are parallel.

REF: 082319geo

4 ANS: 3

(3) Could be a trapezoid.

REF: 081607geo

5	ANS:	4	REF:	082404geo
6	ANS:	2	REF:	011802geo
7	ANS:	2	REF:	011912geo
8	ANS:	3	REF:	061912geo
9	ANS:	4	REF:	061513geo

10 ANS: 3

3) Could be an isosceles trapezoid.

REF: 012318geo

11 ANS: 3	REF:	081913geo
-----------	------	-----------

- 12 ANS: 4 REF: 081813geo
- 13 ANS: 3

The half diagonals have lengths of 6 and 8, so each side of *ABCD* is 10.

REF: 012417geo