Name:

G.CO.C.10: Centroid, Orthocenter, Incenter and Circumcenter www.jmap.org

G.CO.C.10: Centroid, Orthocenter, Incenter and Circumcenter

1 Which geometric principle is used in the construction shown below?

- 1) The intersection of the angle bisectors of a triangle is the center of the inscribed circle.
- The intersection of the angle bisectors of a 2) triangle is the center of the circumscribed circle.
- The intersection of the perpendicular bisectors 3) of the sides of a triangle is the center of the inscribed circle.
- The intersection of the perpendicular bisectors 4) of the sides of a triangle is the center of the circumscribed circle.
- 2 In the diagram below of $\triangle ABC$, CD is the bisector of $\angle BCA$, AE is the bisector of $\angle CAB$, and BG is drawn.

Which statement must be true?

- DG = EG1)
- 2) AG = BG
- 3) $\angle AEB \cong \angle AEC$
- 4) $\angle DBG \cong \angle EBG$

3 In the diagram below, point *B* is the incenter of $\triangle FEC$, and \overline{EBR} , \overline{CBD} , and \overline{FB} are drawn.

If $m \angle FEC = 84$ and $m \angle ECF = 28$, determine and state m $\angle BRC$.

4 In the diagram below of isosceles triangle ABC, $AB \cong CB$ and angle bisectors AD, BF, and CE are drawn and intersect at X.

2

Regents Exam Questions

G.CO.C.10: Centroid, Orthocenter, Incenter and Circumcenter www.jmap.org

5 The diagram below shows the construction of the center of the circle circumscribed about $\triangle ABC$.

- 1) the angle bisectors of $\triangle ABC$
- 2) the medians to the sides of $\triangle ABC$
- 3) the altitudes to the sides of $\triangle ABC$
- 4) the perpendicular bisectors of the sides of $\triangle ABC$
- 6 If the altitudes of a triangle meet at one of the triangle's vertices, then the triangle is
 - 1) a right triangle
 - 2) an acute triangle
 - 3) an obtuse triangle
 - 4) an equilateral triangle
- 7 In which triangle do the three altitudes intersect outside the triangle?
 - 1) a right triangle
 - 2) an acute triangle
 - 3) an obtuse triangle
 - 4) an equilateral triangle
- 8 For a triangle, which two points of concurrence could be located outside the triangle?
 - 1) incenter and centroid
 - 2) centroid and orthocenter
 - 3) incenter and circumcenter
 - 4) circumcenter and orthocenter

What are the coordinates of the point of intersection of the medians of $\triangle ABC$?

- 1) (-1,2)
- 2) (-3,2)
- 3) (0,2)
- 4) (1,2)
- 10 The vertices of the triangle in the diagram below are A(7,9), B(3,3), and C(11,3).

What are the coordinates of the centroid of $\triangle ABC$?

- 1) (5,6)
- 2) (7,3)
- 3) (7,5)
- 4) (9,6)

Name:

3

Regents Exam Questions

G.CO.C.10: Centroid, Orthocenter, Incenter and Circumcenter www.jmap.org

- 11 In a given triangle, the point of intersection of the three medians is the same as the point of intersection of the three altitudes. Which classification of the triangle is correct?
 - 1) scalene triangle
 - 2) isosceles triangle
 - 3) equilateral triangle
 - 4) right isosceles triangle
- 12 Triangle ABC has vertices A(3,3), B(7,9), and

C(11,3). Determine the point of intersection of the medians, and state its coordinates. [The use of the set of axes below is optional.]

13 In the diagram below of $\triangle ABC$, $\overline{AE} \cong \overline{BE}$, $\overline{AF} \cong \overline{CF}$, and $\overline{CD} \cong \overline{BD}$.

Point *P* must be the

- 1) centroid
- 2) circumcenter
- 3) incenter
- 4) orthocenter

14 In triangle *SRK* below, medians \overline{SC} , \overline{KE} , and \overline{RL} intersect at *M*.

Which statement must always be true?

- 1) 3(MC) = SC
- 2) $MC = \frac{1}{3}(SM)$
- 3) RM = 2MC
- 4) SM = KM
- 15 In the diagram below of $\triangle ACE$, medians AD, EB, and \overline{CF} intersect at G. The length of \overline{FG} is 12 cm.

What is the length, in centimeters, of GC?

- 1) 24
- 2) 12
- 3) 6
- 4) 4

Name:

Name:

- G.CO.C.10: Centroid, Orthocenter, Incenter and Circumcenter www.jmap.org
 - 16 In the diagram of $\triangle ABC$ below, medians \overline{AD} and \overline{BE} intersect at point *F*.

- If AF = 6, what is the length of FD?
- 1) 6
- 2) 2
- 3) 3
- 4) 9
- 17 In $\triangle ABC$ shown below, *P* is the centroid and BF = 18.

What is the length of \overline{BP} ?

- 1) 6
- 2) 9
- 3) 3
- 4) 12

18 In the diagram below of $\triangle ABC$, medians \overline{AD} , \overline{BE} , and \overline{CF} intersect at G.

- If CF = 24, what is the length of FG?
- 1) 8
- 2) 10
- 3) 12
- 4) 16
- 19 As shown below, the medians of $\triangle ABC$ intersect at *D*.

If the length of \overline{BE} is 12, what is the length of \overline{BD} ?

- 1) 8 2) 9
- 2) 9 3) 3
- 4) 4
- 20 In the diagram below of $\triangle MAR$, medians \overline{MN} , \overline{AT} , and \overline{RH} intersect at O.

If TO = 10, what is the length of \overline{TA} ?

- 1) 30
- 2) 25
- 3) 20
- 4) 15

Name:

- G.CO.C.10: Centroid, Orthocenter, Incenter and Circumcenter www.jmap.org
 - 21 In the diagram below of $\triangle ABC$, point *H* is the intersection of the three medians.

If DH measures 2.4 centimeters, what is the length, in centimeters, of \overline{AD} ?

- 1) 3.6
- 2) 4.8
- 3) 7.2
- 4) 9.6
- 22 In the diagram of $\triangle ABC$ below, Jose found centroid *P* by constructing the three medians. He measured \overline{CF} and found it to be 6 inches.

If PF = x, which equation can be used to find x?

- $1) \quad x + x = 6$
- $2) \quad 2x + x = 6$
- $3) \quad 3x + 2x = 6$
- 4) $x + \frac{2}{3}x = 6$

23 In $\triangle ABC$ shown below, medians \overline{AD} , \overline{BE} , and \overline{CF} intersect at point *R*.

- 1) 9
- 2) 12
- 3) 15
- 4) 27
- 24 In the diagram below, point *P* is the centroid of $\triangle ABC$.

If PM = 2x + 5 and BP = 7x + 4, what is the length of \overline{PM} ?

- 1) 9
- 2) 2
- 3) 18
- 4) 27
- 25 The three medians of a triangle intersect at a point. Which measurements could represent the segments of one of the medians?
 - 1) 2 and 3
 - 2) 3 and 4.5
 - 3) 3 and 6
 - 4) 3 and 9

Name:

G.CO.C.10: Centroid, Orthocenter, Incenter and Circumcenter www.jmap.org

26 In the diagram below of $\triangle TEM$, medians \overline{TB} , \overline{EC} , and \overline{MA} intersect at *D*, and TB = 9. Find the length of \overline{TD} .

27 In the diagram below, \overline{QM} is a median of triangle PQR and point C is the centroid of triangle PQR.

If QC = 5x and CM = x + 12, determine and state the length of \overline{QM} .

28 In $\triangle XYZ$, shown below, medians \overline{XE} , \overline{YF} , and \overline{ZD} intersect at *C*.

If CE = 5, YF = 21, and XZ = 15, determine and state the perimeter of triangle *CFX*.

G.CO.C.10: Centroid, Orthocenter, Incenter and Circumcenter Answer Section

- 1 ANS: 1 REF: 081028ge
- 2 ANS: 4

 \overline{BG} is also an angle bisector since it intersects the concurrence of \overline{CD} and \overline{AE}

- REF: 061025ge
- 3 ANS:

$$180 - \left(\frac{84}{2} + 28\right) = 180 - 70 = 110$$

REF: 061534ge

- 4 ANS: 180 2(25) = 130
- REF:
 011730geo

 5
 ANS:
 4
 REF:
 080925ge

 6
 ANS:
 1
 REF:
 081904geo

 7
 ANS:
 3
 REF:
 fall0825ge
- 8 ANS: 4 REF: 081224ge
- 9 ANS: 1

	REF:	011516ge
10	ANS	3

10	ANS:	3	REF:	011110ge
11	ANS:	3	REF:	011202ge
12	ANS:			

(7,5)
$$m_{\overline{AB}} = \left(\frac{3+7}{2}, \frac{3+9}{2}\right) = (5,6) \ m_{\overline{BC}} = \left(\frac{7+11}{2}, \frac{9+3}{2}\right) = (9,6)$$

REF: 081134ge

13 ANS: 1 REF: 061214ge

14 ANS: 1

M is a centroid, and cuts each median 2:1.

REF: 061818geo

- 15 ANS: 1 REF: 061104ge
- 16 ANS: 3

The centroid divides each median into segments whose lengths are in the ratio 2 : 1.

REF: 081307ge

17 ANS: 4

The centroid divides each median into segments whose lengths are in the ratio 2 : 1.

REF: 081220ge

18 ANS: 1

The centroid divides each median into segments whose lengths are in the ratio 2 : 1. $\overline{GC} = 2\overline{FG}$ $\overline{GC} + \overline{FG} = 24$ $2\overline{FG} + \overline{FG} = 24$ $3\overline{FG} = 24$ $\overline{FG} = 8$

REF: 081018ge 19 ANS: 1 2x + x = 12. $\overline{BD} = 2(4) = 8$ 3x = 12 x = 4REF: 011408ge

20 ANS: 1 REF: 061527ge 21 ANS: 3 2.4+2(2.4) = 7.2

REF: 081526ge

22 ANS: 2

The centroid divides each median into segments whose lengths are in the ratio 2 : 1.

REF: 060914ge

23 ANS: 1 2(2x-6) = 24 2x-6 = 12 2x = 18 x = 924 ANS: 1 7x + 4 = 2(2x + 5). PM = 2(2) + 5 = 9 7x + 4 = 4x + 10 3x = 6 x = 2REF: 011226ge 25 ANS: 3 REF: 061424ge

26 ANS:

6. The centroid divides each median into segments whose lengths are in the ratio 2 : 1. $\overline{TD} = 6$ and $\overline{DB} = 3$

REF: 011034ge 27 ANS: 5x = 2(x + 12) QM = 5(8) + (8) + 12 = 605x = 2x + 243x = 24x = 8

REF: 081433ge

28 ANS:

REF: 012030geo