Regents Exam Questions G.CO.B.7: Triangle Congruency www.jmap.org

G.CO.B.7: Triangle Congruency

1 Which statement is sufficient evidence that $\triangle DEF$ is congruent to $\triangle ABC$?

- 1) AB = DE and BC = EF
- 2) $\angle D \cong \angle A, \angle B \cong \angle E, \angle C \cong \angle F$
- 3) There is a sequence of rigid motions that maps \overline{AB} onto \overline{DE} , \overline{BC} onto \overline{EF} , and \overline{AC} onto \overline{DF} .
- 4) There is a sequence of rigid motions that maps point A onto point D, \overline{AB} onto \overline{DE} , and $\angle B$ onto $\angle E$.
- 2 Triangles *JOE* and *SAM* are drawn such that $\angle E \cong \angle M$ and $\overline{EJ} \cong \overline{MS}$. Which mapping would *not* always lead to $\triangle JOE \cong \triangle SAM$?
 - 1) $\angle J$ maps onto $\angle S$
 - 2) $\angle O$ maps onto $\angle A$
 - 3) \overline{EO} maps onto \overline{MA}
 - 4) \overline{JO} maps onto \overline{SA}
- 3 In the two distinct acute triangles *ABC* and *DEF*, $\angle B \cong \angle E$. Triangles *ABC* and *DEF* are congruent when there is a sequence of rigid motions that maps
 - 1) $\angle A$ onto $\angle D$, and $\angle C$ onto $\angle F$
 - 2) \overline{AC} onto \overline{DF} , and \overline{BC} onto \overline{EF}
 - 3) $\angle C$ onto $\angle F$, and \overline{BC} onto \overline{EF}
 - 4) point A onto point D, and AB onto DE

- 4 Triangles *YEG* and *POM* are two distinct non-right triangles such that $\angle G \cong \angle M$. Which statement is sufficient to prove \triangle *YEG* is always congruent to \triangle *POM*?
 - 1) $\angle E \cong \angle O$ and $\angle Y \cong \angle P$
 - 2) $\overline{YG} \cong \overline{PM}$ and $\overline{YE} \cong \overline{PO}$
 - 3) There is a sequence of rigid motions that maps $\angle E$ onto $\angle O$ and \overline{YE} onto \overline{PO} .
 - 4) There is a sequence of rigid motions that maps point Y onto point P and \overline{YG} onto \overline{PM} .
- 5 In the diagram below, right triangle *PQR* is transformed by a sequence of rigid motions that maps it onto right triangle *NML*.

Write a set of three congruency statements that would show *ASA* congruency for these triangles.

6 Given right triangles <u>ABC</u> and <u>DEF</u> where $\angle C$ and $\angle F$ are right angles, $\overline{AC} \cong \overline{DF}$ and $\overline{CB} \cong \overline{FE}$. Describe a precise sequence of rigid motions which would show $\triangle ABC \cong \triangle DEF$.

Name:

Name:

Regents Exam Questions G.CO.B.7: Triangle Congruency www.jmap.org

7 In the diagram below, $\triangle ABC$ and $\triangle XYZ$ are graphed.

Use the properties of rigid motions to explain why $\triangle ABC \cong \triangle XYZ$.

8 As graphed on the set of axes below, $\triangle A'B'C'$ is the image of $\triangle ABC$ after a sequence of transformations.

Is $\triangle A'B'C'$ congruent to $\triangle ABC$? Use the properties of rigid motion to explain your answer.

9 In the diagram below, $\overline{AC} \cong \overline{DF}$ and points A, C, D, and F are collinear on line ℓ .

Let $\Delta D' E' F$ be the image of ΔDEF after a translation along ℓ , such that point D is mapped onto point A. Determine and state the location of F'. Explain your answer. Let $\Delta D''E''F''$ be the image of $\Delta D' E' F$ after a reflection across line ℓ . Suppose that E'' is located at B. Is ΔDEF congruent to ΔABC ? Explain your answer.

10 Given: D is the image of A after a reflection over \overleftarrow{CH} .

 \overrightarrow{CH} is the perpendicular bisector of \overrightarrow{BCE} $\triangle ABC$ and $\triangle DEC$ are drawn Prove: $\triangle ABC \cong \triangle DEC$

11 After a reflection over a line, $\Delta A'B'C'$ is the image of ΔABC . Explain why triangle ABC is congruent to triangle $\Delta A'B'C'$.

Name:

Regents Exam Questions G.CO.B.7: Triangle Congruency www.jmap.org

12 In the diagram below of $\triangle ABC$ and $\triangle XYZ$, a sequence of rigid motions maps $\angle A$ onto $\angle X$, $\angle C$ onto $\angle Z$, and \overline{AC} onto \overline{XZ} .

Determine and state whether $\overline{BC} \cong \overline{YZ}$. Explain why.

13 In the graph below, $\triangle ABC$ has coordinates A(-9,2), B(-6,-6), and C(-3,-2), and $\triangle RST$ has coordinates R(-2,9), S(5,6), and T(2,3).

Is $\triangle ABC$ congruent to $\triangle RST$? Use the properties of rigid motions to explain your reasoning.

G.CO.B.7: Triangle Congruency Answer Section

- 1 ANS: 3 REF: 061524geo
- 2 ANS: 4

KEF. 001524g

 $\begin{array}{c} \text{ANS. 4} \\ \text{d) is SSA} \end{array}$

REF: 061914geo

3 ANS: 3

NYSED has stated that all students should be awarded credit regardless of their answer to this question.

REF: 061722geo

4 ANS: 3

(3) is AAS, which proves congruency. (1) is AAA, (2) is SSA and (4) is AS.

REF: 012422geo

5 ANS:

 $\angle Q \cong \angle M \ \angle P \cong \angle N \ \overline{QP} \cong \overline{MN}$

REF: 012025geo

6 ANS:

Translate $\triangle ABC$ along \overline{CF} such that point *C* maps onto point *F*, resulting in image $\triangle A'B'C$. Then reflect $\triangle A'B'C$ over \overline{DF} such that $\triangle A'B'C$ maps onto $\triangle DEF$.

or

Reflect $\triangle ABC$ over the perpendicular bisector of *EB* such that $\triangle ABC$ maps onto $\triangle DEF$.

REF: fall1408geo

7 ANS:

The transformation is a rotation, which is a rigid motion.

REF: 081530geo

8 ANS:

Yes. The sequence of transformations consists of a reflection and a translation, which are isometries which preserve distance and congruency.

REF: 011628geo

9 ANS:

Translations preserve distance. If point *D* is mapped onto point *A*, point *F* would map onto point *C*. $\triangle DEF \cong \triangle ABC$ as $\overline{AC} \cong \overline{DF}$ and points are collinear on line ℓ and a reflection preserves distance.

REF: 081534geo

10 ANS:

It is given that point D is the image of point A after a reflection in line CH. It is given that \overrightarrow{CH} is the perpendicular bisector of \overrightarrow{BCE} at point C. Since a bisector divides a segment into two congruent segments at its midpoint, $\overrightarrow{BC} \cong \overrightarrow{EC}$. Point E is the image of point B after a reflection over the line CH, since points B and E are equidistant from point C and it is given that \overrightarrow{CH} is perpendicular to \overrightarrow{BE} . Point C is on \overrightarrow{CH} , and therefore, point C maps to itself after the reflection over \overrightarrow{CH} . Since all three vertices of triangle ABC map to all three vertices of triangle DEC under the same line reflection, then $\triangle ABC \cong \triangle DEC$ because a line reflection is a rigid motion and triangles are congruent when one can be mapped onto the other using a sequence of rigid motions.

REF: spr1414geo

11 ANS:

Reflections are rigid motions that preserve distance.

REF: 061530geo

12 ANS:

Yes. $\angle A \cong \angle X$, $\angle C \cong \angle Z$, $\overline{AC} \cong \overline{XZ}$ after a sequence of rigid motions which preserve distance and angle measure, so $\triangle ABC \cong \triangle XYZ$ by ASA. $\overline{BC} \cong \overline{YZ}$ by CPCTC.

REF: 081730geo

13 ANS:

No. Since $\overline{BC} = 5$ and $\overline{ST} = \sqrt{18}$ are not congruent, the two triangles are not congruent. Since rigid motions preserve distance, there is no rigid motion that maps $\triangle ABC$ onto $\triangle RST$.

REF: 011830geo