Regents Exam Questions G.CO.B.6: Properties of Transformations 2 www.jmap.org

G.CO.B.6: Properties of Transformations 2

1 Which expression best describes the transformation shown in the diagram below?

- 1) same orientation; reflection
- 2) opposite orientation; reflection
- 3) same orientation; translation
- 4) opposite orientation; translation
- 2 Right triangle *ABC* is shown in the graph below.

After a reflection over the *y*-axis, the image of $\triangle ABC$ is $\triangle A'B'C'$. Which statement is *not* true?

- 1) $\overline{BC} \cong \overline{B'C'}$
- 2) $\overline{A'B'} \perp \overline{B'C'}$
- 3) AB = A'B'
- 4) $\overline{AC} \parallel \overline{A'C'}$

3 As shown in the diagram below, when right triangle DAB is reflected over the *x*-axis, its image is triangle DCB.

Which statement justifies why $\overline{AB} \cong \overline{CB}$?

- 1) Distance is preserved under reflection.
- 2) Orientation is preserved under reflection.
- 3) Points on the line of reflection remain invariant.
- 4) Right angles remain congruent under reflection.

Name:

Regents Exam Questions G.CO.B.6: Properties of Transformations 2 www.jmap.org

4 The rectangle *ABCD* shown in the diagram below will be reflected across the *x*-axis.

What will not be preserved?

- 1) slope of \overline{AB}
- 2) parallelism of \overline{AB} and \overline{CD}
- 3) length of \overline{AB}
- 4) measure of $\angle A$
- 5 As shown in the diagram below, when hexagon *ABCDEF* is reflected over line *m*, the image is hexagon *A'B'C'D'E'F'*.

Under this transformation, which property is *not* preserved?

- 1) area
- 2) distance
- 3) orientation
- 4) angle measure

- 6 Which property is not preserved by a glide reflection?
 - 1) betweenness
 - 2) angle measure
 - 3) orientation
 - 4) collinearity
- 7 The image of $\triangle ABC$ after the transformation $r_{y-\text{axis}}$ is $\triangle A'B'C'$. Which property is *not*

preserved?

- 1) distance
- 2) orientation
- 3) collinearity
- 4) angle measure
- 8 A property not preserved under a line reflection is
 - 1) angle measure
 - 2) collinearity
 - 3) distance
 - 4) orientation
- 9 A line reflection preserves
 - 1) distance and orientation
 - 2) angle measurement and orientation
 - 3) distance, but not angle measurement
 - 4) distance and angle measurement
- 10 When a quadrilateral is reflected over the line y = x, which geometric relationship is *not* preserved?
 - 1) congruence
 - 2) orientation
 - 3) parallelism
 - 4) perpendicularity
- 11 If $\Delta W'X'Y'$ is the image of ΔWXY after the transformation R_{90° , which statement is *false*?
 - 1) XY = X'Y'
 - 2) $\overline{WX} \parallel \overline{W'X'}$
 - 3) $\triangle WXY \cong \triangle W'X'Y'$
 - 4) $m \angle XWY = m \angle X'W'Y'$
- 12 Triangle *ABC* has the coordinates A(3,0), B(3,8), and C(6,6). If $\triangle ABC$ is reflected over the line y = x, which statement is true about the image of $\triangle ABC$?
 - 1) One point remains fixed.
 - 2) The size of the triangle changes.
 - 3) The orientation does not change.
 - 4) One side of $\triangle ABC$ is parallel to the line y = x.

Regents Exam Questions

G.CO.B.6: Properties of Transformations 2 www.jmap.org

- 13 Triangle ABC has the coordinates A(1,2), B(5,2),and C(5,5). Triangle ABC is rotated 180° about the origin to form triangle A'B'C'. Triangle A'B'C' is
 - 1) acute
 - 2) isosceles
 - 3) obtuse
 - right 4)
- 14 Quadrilateral *MNOP* is a trapezoid with $\overline{MN} \parallel \overline{OP}$. If M'N'O'P' is the image of MNOP after a reflection over the x-axis, which two sides of quadrilateral M'N'O'P' are parallel?
 - 1) $\overline{M'N'}$ and $\overline{O'P'}$
 - 2) $\overline{M'N'}$ and $\overline{N'O'}$
 - 3) $\overline{P'M'}$ and $\overline{O'P'}$
 - 4) $\overline{P'M'}$ and $\overline{N'O'}$
- 15 The vertices of parallelogram *ABCD* are A(2,0), *B*(0,-3), *C*(3,-3), and *D*(5,0). If *ABCD* is reflected over the x-axis, how many vertices remain invariant?
 - 1) 1
 - 2) 2
 - 3) 3
 - 4) 0
- 16 The image of rhombus VWXY preserves which properties under the transformation $T_{2,-3}$?
 - 1) parallelism, only
 - 2) orientation, only
 - 3) both parallelism and orientation
 - 4) neither parallelism nor orientation
- 17 Pentagon *PQRST* has \overline{PQ} parallel to \overline{TS} . After a translation of $T_{2,-5}$, which line segment is parallel
 - to P'Q'?
 - 1) $\overline{R'Q'}$
 - 2) $\overline{R'S'}$

$$\frac{2}{2}$$
 $\frac{\pi S}{\pi S}$

- $\begin{array}{c} 3) \quad \overline{T'S'} \\ 4) \quad \overline{T'P} \end{array}$

Name:

18 The vertices of $\triangle ABC$ are A(3,2), B(6,1), and C(4,6). Identify and graph a transformation of $\triangle ABC$ such that its image, $\triangle A'B'C'$, results in $\overline{AB} \parallel A'B'.$

19 Triangle *DEG* has the coordinates D(1,1), E(5,1), and G(5,4). Triangle *DEG* is rotated 90° about the origin to form $\Delta D'E'G'$. On the grid below, graph and label $\triangle DEG$ and $\triangle D'E'G'$. State the coordinates of the vertices D', E', and G'. Justify that this transformation preserves distance.

Regents Exam Questions

G.CO.B.6: Properties of Transformations 2 www.jmap.org

20 Triangle *ABC* has coordinates A(2,-2), B(2,1), and C(4,-2). Triangle A'B'C' is the image of $\triangle ABC$ under $T_{5,-2}$. On the set of axes below, graph and label $\triangle ABC$ and its image, $\triangle A'B'C'$. Determine the relationship between the area of $\triangle ABC$ and the area of $\triangle ABC$ and the area of $\triangle A'B'C'$. Justify your response.

21 In the accompanying diagram of square *ABCD*, *F* is the midpoint of \overline{AB} , *G* is the midpoint of \overline{BC} , *H* is the midpoint of \overline{CD} , and *E* is the midpoint of \overline{DA} .

Find the image of $\triangle EOA$ after it is reflected in line ℓ . Is this isometry direct or opposite? Explain your answer.

Name:

22 A pentagon is drawn on the set of axes below. If the pentagon is reflected over the *y*-axis, determine if this transformation is an isometry. Justify your answer. [The use of the set of axes is optional.]

23 After the transformation $r_{y=x}$, the image of $\triangle ABC$ is $\triangle A'B'C'$. If AB = 2x + 13 and A'B' = 9x - 8, find the value of x.

G.CO.B.6: Properties of Transformations 2 Answer Section

1	ANS:	2	REF:	011003ge
2	ANS:	4	REF:	081408ge
3	ANS:	1	REF:	061307ge
4	ANS:	1	REF:	061005ge
5	ANS:	3	REF:	011503ge
6	ANS:	3	REF:	088617siii
7	ANS:	2	REF:	081515ge
8	ANS:	4	REF:	068030siii
9	ANS:	4	REF:	088421siii
10	ANS:	2	REF:	011211ge
11	ANS:	2	REF:	061509ge
12	ANS:	1		

C(6,6) remains fixed after the reflection.

REF: 011622ge

13 ANS: 4

Distance is preserved after a rotation.

REF: 081304ge

14	ANS:	1	REF:	011102ge
15	ANS:	2	REF:	081202ge
16	ANS:	3	REF:	061421ge
17	ANS:	3	REF:	081104ge

18 ANS:

REF: fall0830ge

ID: A

REF: 080937ge

20 ANS:

A'(7,-4), B'(7,-1). C'(9,-4). The areas are equal because translations preserve distance.

REF: 011235ge

21 ANS:

 $\triangle HOC$. This reflection is an opposite isometry because the orientation of $\triangle EOA$ is different from $\triangle HOC$.

REF: 060424b

22 ANS:

Yes. A reflection is an isometry.

REF: 061132ge

23 ANS:

Distance is preserved after the reflection. 2x + 13 = 9x - 8

21 = 7x3 = x

REF: 011329ge