G.CO.A.2: Identifying Transformations 2

- 1 One function of a movie projector is to enlarge the image on the film. This procedure is an example of a
 - 1) line of symmetry
 - 2) line reflection
 - 3) translation
 - 4) dilation
- 2 Which transformation can map the letter **S** onto itself?
 - 1) glide reflection
 - 2) translation
 - 3) line reflection
 - 4) rotation
- 3 A transformation of a polygon that always preserves both length and orientation is
 - 1) dilation
 - 2) translation
 - 3) line reflection
 - 4) glide reflection
- 4 Which transformation does *not* preserve orientation?
 - 1) translation
 - 2) dilation
 - 3) reflection in the *y*-axis
 - 4) rotation
- 5 Which transformation produces a figure that is always the mirror image of the original figure?
 - 1) line reflection
 - 2) dilation
 - 3) translation
 - 4) rotation
- 6 Which transformation does not always result in an image that is congruent to the original figure?
 - 1) dilation
 - 2) reflection
 - 3) rotation
 - 4) translation
- 7 After which transformation of $\triangle ABC$ could the image $\triangle A'B'C'$ not have the same area?
 - 1) translation
 - 2) rotation
 - 3) point reflection
 - 4) dilation

- 8 Which transformation produces a figure similar but not congruent to the original figure?
 - 1) $T_{1,3}$
 - 2) $D_{\frac{1}{2}}$
 - 3) $R_{90^{\circ}}$
 - 4) $r_{y=x}$
- 9 Point P' is the image of point P(-3,4) after a translation defined by $T_{(7,-1)}$. Which other

transformation on P would also produce P'?

- 1) $r_{y=-x}$
- 2) r_{y-axis}
- 3) $R_{90^{\circ}}$
- 4) $R_{-90^{\circ}}$
- 10 Which transformation is a direct isometry?
 - 1) *D*₂
 - 2) D₋₂
 - 3) r_{y-axis}
 - 4) T_{2,5}
- 11 Which transformation is an opposite isometry?
 - 1) dilation
 - 2) line reflection
 - 3) rotation of 90°
 - 4) translation
- 12 Which transformation is *not* always an isometry?
 - 1) rotation
 - 2) dilation
 - 3) reflection
 - 4) translation
- 13 Which transformation is *not* an isometry?
 - 1) $r_{y=x}$
 - 2) $R_{0,90^{\circ}}$
 - 3) $T_{3,6}$
 - 4) D_2

G.CO.A.2: Identifying Transformations 2 Answer Section

1	ANS:	4	REF:	060603a
2	ANS:	4	REF:	061015ge
3	ANS:	2	REF:	081015ge
4	ANS:	3	REF:	060218b
5	ANS:	1	REF:	010809a
6	ANS:	1	REF:	080611a
7	ANS:	4	REF:	089618siii
8	ANS:	2		

A dilation affects distance, not angle measure.

REF: 080906ge

9	ANS:	4	REF:	060217b
10	ANS:	4	REF:	080105b
11	ANS:	2	REF:	060313b
12	ANS:	2	REF:	011006ge
13	ANS:	4	REF:	010210b