1. Give an example from real life when finding the midpoint of a segment might be useful.

2. Prove that the midpoint of \overline{AB} , where $A = (x_1, y_1)$ and $B = (x_2, y_2)$, is $C\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$.

3. Explain why you can use the coordinates of either point as (x_2, y_2) when finding the distance between two points.

4. Use the distance formula to show why the distance between two points on a number line is |a-b|, where a and b are the x-coordinates of the points.

[1] Answers may vary. Sample: You may need to cut a metal pipe into two equal pieces.

$$AC = \sqrt{\left(x_1 - \frac{x_1 + x_2}{2}\right)^2 + \left(y_1 - \frac{y_1 + y_2}{2}\right)^2}$$

$$= \sqrt{\left(\frac{x_1 - x_2}{2}\right)^2 + \left(\frac{y_1 - y_2}{2}\right)^2}$$

$$BC = \sqrt{\left(x_2 - \frac{x_1 + x_2}{2}\right)^2 + \left(y_2 - \frac{y_1 + y_2}{2}\right)^2}$$

$$= \sqrt{\left(\frac{x_2 - x_1}{2}\right)^2 + \left(\frac{y_2 - y_1}{2}\right)^2}$$

- Since $\left(\frac{x_2 x_1}{2}\right)^2 = \left(\frac{x_1 x_2}{2}\right)^2$ and $\left(\frac{y_2 y_1}{2}\right)^2 = \left(\frac{y_1 y_2}{2}\right)^2$, AC = BC and C is the midpoint.
- [3] In the distance formula, you square the differences, and $(a-b)^2 = (b-a)^2$.

Using the points (a, 0) and (b, 0),

$$d = \sqrt{(a-b)^2 + (0-0)^2}$$
$$= \sqrt{(a-b)^2}$$

$$[4] = |a-b|$$