1

Regents Exam Questions F.TF.B.7: Trigonometric Equations 1 www.jmap.org

F.TF.B.7: Trigonometric Equations 1

- 1 A solution set of the equation $5\sin\theta + 3 = 3$ contains all multiples of
 - 45° 1)
 - 2) 90°
 - 3) 135°
 - 4) 180°
- 2 If $\cos 2\theta = 1$, a value of θ is
 - 45° 1)
 - 2) 90°
 - 3) 180°
 - 4) 270°
- 3 What is the solution set for $2\cos\theta 1 = 0$ in the interval $0^{\circ} \le \theta < 360^{\circ}$?
 - 1) $\{30^{\circ}, 150^{\circ}\}$
 - 2) $\{60^{\circ}, 120^{\circ}\}$
 - 3) $\{30^{\circ}, 330^{\circ}\}$
 - 4) $\{60^\circ, 300^\circ\}$
- 4 A solution of the equation $\sqrt{4\sin x + 7} = 3$ is
 - $\frac{\pi}{4}$ 1)
 - $\frac{\pi}{3}$ 2)
 - $\frac{\pi}{6}$ 3)

 - $\frac{\pi}{2}$ 4)

- 5 Which two values of *x* satisfy the equation
 - $\sqrt{3-2\cos x} = 2?$
 - 1) 150° and 210°
 - 2) 120° and 240°
 - 3) 60° and 300°
 - 4) 30° and 330°
- 6 If $\sin A = -1$ and $0^{\circ} \le A < 360^{\circ}$, find m $\angle A$.
- 7 Solve the following equation algebraically for all values of θ in the interval $0^{\circ} \le \theta \le 180^{\circ}$. $2\sin\theta - 1 = 0$
- 8 Find a value for θ in the interval $90^\circ \le \theta \le 270^\circ$ that satisfies the equation $2\sin\theta + 1 = 0$.
- 9 Find the value of x in the domain $0^{\circ} \le x^{\circ} < 90^{\circ}$ that satisfies the equation $2\sin x - \sqrt{2} = 0$.
- 10 Find the number of degrees in the measure of the smallest positive angle that satisfies the equation $2\cos x + 1 = 0.$
- 11 Find m $\angle \theta$ in the interval $180^\circ \le \theta \le 270^\circ$ that satisfies the equation $2\cos\theta + 1 = 0$.

Name:

Name:

Regents Exam Questions F.TF.B.7: Trigonometric Equations 1 www.jmap.org

- 12 If θ is a positive acute angle and $2\cos\theta + 3 = 4$, find the number of degrees in θ .
- 13 What is the number of degrees in the value of θ that satisfies the equation $2\cos\theta 1 = 0$ in the interval $180^\circ \le \theta \le 360^\circ$?
- 14 Solve for the *smallest* non-negative value of θ : $\sqrt{3\cos\theta + 1} = 2.$
- 15 Solve the equation below algebraically for all values of θ in the interval $0^{\circ} \le \theta < 360^{\circ}$. $3\cos\theta - 1 = \cos\theta$
- 16 What are the values of θ in the interval $0^{\circ} \le \theta < 360^{\circ}$ that satisfy the equation $\tan \theta \sqrt{3} = 0$?
 - 1) 60°, 240°
 - 2) 72°, 252°
 - 3) 72°, 108°, 252°, 288°
 - $4) \quad 60^{\circ}, 120^{\circ}, 240^{\circ}, 300^{\circ}$
- 17 What value of x in the interval $0^\circ \le x \le 180^\circ$ satisfies the equation $\sqrt{3} \tan x + 1 = 0$?
 - 1) -30°
 - 2) 30°
 - 3) 60°
 - 4) 150°

- 18 Solve the equation $2 \tan C 3 = 3 \tan C 4$ algebraically for all values of *C* in the interval $0^{\circ} \le C < 360^{\circ}$.
- 19 Navigators aboard ships and airplanes use nautical miles to measure distance. The length of a nautical mile varies with latitude. The length of a nautical mile, *L*, in feet, on the latitude line θ is given by the formula $L = 6,077 31 \cos 2\theta$. Find, to the *nearest degree*, the angle θ , $0 \le \theta \le 90^{\circ}$, at which the length of a nautical mile is approximately 6,076 feet.
- 20 The horizontal distance, in feet, that a golf ball travels when hit can be determined by the formula

 $d = \frac{v^2 \sin 2\theta}{g}$, where v equals initial velocity, in

feet per second; g equals acceleration due to gravity; θ equals the initial angle, in degrees, that the path of the ball makes with the ground; and d equals the horizontal distance, in feet, that the ball will travel. A golfer hits the ball with an initial velocity of 180 feet per second and it travels a distance of 840 feet. If g = 32 feet per second per second, what is the smallest initial angle the path of the ball makes with the ground, to the *nearest degree*?

21 An architect is using a computer program to design the entrance of a railroad tunnel. The outline of the opening is modeled by the function $f(x) = 8 \sin x + 2$, in the interval $0 \le x \le \pi$, where x is expressed in radians. Solve algebraically for all values of x in the interval $0 \le x \le \pi$, where the height of the opening, f(x), is 6. Express your answer in terms of π . If the x-axis represents the base of the tunnel, what is the maximum height of the entrance of the tunnel?

F.TF.B.7: Trigonometric Equations 1 Answer Section

7 ANS:

16 ANS: 1

20 ANS:

. The sine function has a maximum height of 1. 8(1) + 2 = 10.

REF: 010630b