F.TF.B.6: Domain and Range

- 1 Which value of x is *not* in the domain of the function defined by $y = \tan x$?
 - 1) π
 - $2) \frac{\pi}{2}$
 - 3) $\frac{\pi}{3}$
 - 4) $\frac{2\pi}{3}$
- 2 In which interval of f(x) = cos(x) is the inverse also a function?
 - $1) \quad -\frac{\pi}{2} < x < \frac{\pi}{2}$
 - $2) \quad -\frac{\pi}{2} \le x \le \frac{\pi}{2}$
 - 3) $0 \le x \le \pi$
 - $4) \quad \frac{\pi}{2} \le x \le \frac{3\pi}{2}$
- 3 Which statement regarding the inverse function is true?
 - 1) A domain of $y = \sin^{-1} x$ is $[0, 2\pi]$.
 - 2) The range of $y = \sin^{-1} x$ is [-1, 1].
 - 3) A domain of $y = \cos^{-1} x$ is $(-\infty, \infty)$.
 - 4) The range of $y = \cos^{-1} x$ is $[0, \pi]$.

- 4 The function $f(x) = \tan x$ is defined in such a way that $f^{-1}(x)$ is a function. What can be the domain of f(x)?
 - 1) $\{x \mid 0 \le x \le \pi\}$
 - 2) $\{x \mid 0 \le x \le 2\pi\}$
 - $3) \quad \left\{ x \mid -\frac{\pi}{2} < x < \frac{\pi}{2} \right\}$
 - $4) \quad \left\{ x \left| -\frac{\pi}{2} < x < \frac{3\pi}{2} \right. \right\}$
- 5 When the inverse of $\tan \theta$ is sketched, its domain is
 - 1) $-1 \le \theta \le 1$
 - $2) \quad -\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$
 - 3) $0 \le \theta \le \pi$
 - 4) $-\infty < \theta < \infty$

F.TF.B.6: Domain and Range Answer Section

1 ANS: 2 REF: 018635siii 2 ANS: 3 REF: 061224a2 3 ANS: 4 REF: 061427a2 4 ANS: 3 REF: 061022a2 5 ANS: 4 REF: 011622a2