F.TF.A.2: Determining Trigonometric Functions 4

- 1 If θ is an angle in standard position and P(-3,4) is a point on the terminal side of θ , what is the value of $\sin \theta$?
 - 1) $\frac{3}{5}$
 - 2) $-\frac{3}{5}$
 - 3) $\frac{4}{5}$
 - 4) $-\frac{4}{5}$
- 2 If the terminal side of angle θ , in standard position, passes through point (-4,3), what is the numerical value of $\sin \theta$?
 - 1) $\frac{3}{5}$
 - 2) $\frac{4}{5}$
 - 3) $-\frac{3}{5}$
 - 4) $-\frac{4}{5}$
- 3 If the terminal side of angle θ passes through point (-4,3), what is the value of $\cos \theta$?
 - 1) $\frac{3}{5}$
 - 2) $-\frac{3}{5}$
 - 3) $\frac{4}{5}$
 - 4) $-\frac{4}{5}$

- 4 A circle centered at the origin has a radius of 10 units. The terminal side of an angle, θ , intercepts the circle in Quadrant II at point C. The y-coordinate of point C is 8. What is the value of $\cos \theta$?
 - 1) $-\frac{3}{5}$
 - 2) $-\frac{3}{4}$
 - 3) $\frac{3}{5}$
 - 4) $\frac{4}{5}$
- 5 Circle O has a radius of 2 units. An angle with a measure of $\frac{\pi}{6}$ radians is in standard position. If the terminal side of the angle intersects the circle at point B, what are the coordinates of B?
 - 1) $\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$
 - 2) $(\sqrt{3},1)$
 - $3) \quad \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$
 - 4) $(1,\sqrt{3})$

F.TF.A.2: Determining Trigonometric Functions 4 www.jmap.org

- 6 If θ is an angle in standard position whose terminal side passes through the point (-2, -3), what is the numerical value of $\tan \theta$?
 - 1) $\frac{2}{3}$
 - 2) $\frac{3}{2}$
 - 3) $-\frac{2}{\sqrt{13}}$
 - 4) $-\frac{3}{\sqrt{13}}$
- 7 Angle θ is in standard position and (-4,0) is a point on the terminal side of θ . What is the value of sec θ ?
 - 1) -4
 - 2) -1
 - 3) 0
 - 4) undefined
- 8 If the terminal side of angle θ passes through point (-3,-4), what is the value of $\sec \theta$?
 - 1) $\frac{5}{3}$
 - 2) $-\frac{5}{3}$
 - 3) $\frac{5}{4}$
 - 4) $-\frac{5}{4}$

- 9 If θ is an angle in standard position whose terminal side passes through the point (-3,-4), which statement is true?
 - 1) $\sec \theta > 0$ and $\tan \theta > 0$
 - 2) $\sec \theta < 0$ and $\tan \theta < 0$
 - 3) $\sec \theta > 0$ and $\tan \theta < 0$
 - 4) $\sec \theta < 0$ and $\tan \theta > 0$
- 10 The origin of a coordinate grid is labeled A. Line segment AB forms an angle of 30° with the x-axis. If AB = 8, the coordinates of B are:
 - 1) (6,4)
 - 2) $(8\cos 30^{\circ}, 8\sin 30^{\circ})$
 - 3) $(8\sin 30^{\circ}, 8\cos 30^{\circ})$
 - 4) $(4,4\sqrt{3})$
- 11 An angle, θ , is in standard position and its terminal side passes through the point (2,-1). Find the *exact* value of $\sin \theta$.
- 12 If θ is an angle in standard position and its terminal side passes through the point (-3,2), find the exact value of $\csc \theta$.
- Determine the exact value of $\csc P$ if P is an angle in standard position and its terminal side passes through the point (5,-8).

F.TF.A.2: Determining Trigonometric Functions 4 Answer Section

1 ANS: 3

$$\sin \theta = \frac{y}{\sqrt{x^2 + y^2}} = \frac{4}{\sqrt{(-3)^2 + 4^2}} = \frac{4}{5}$$

REF: 010616b

2 ANS: 1

A reference triangle can be sketched using the coordinates (-4,3) in the second quadrant to find the value of $\sin \theta$.

REF: spr1503aii

3 ANS: 4

$$\cos \theta = \frac{x}{\sqrt{x^2 + y^2}} = \frac{-4}{\sqrt{(-4)^2 + 3^2}} = -\frac{4}{5}$$

REF: 068628siii

4 ANS: 1

REF: 061617aii

5 ANS: 2

$$x = 2 \cdot \frac{\sqrt{3}}{2} = \sqrt{3}$$
 $y = 2 \cdot \frac{1}{2} = 1$

REF: 061525a2

6 ANS: 2

$$\sqrt{(-2)^2 + (-3)^2} = \sqrt{13}; \tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\frac{-3}{\sqrt{13}}}{\frac{-2}{\sqrt{13}}} = \frac{3}{2}$$

REF: 062304aii

7 ANS: 2

$$\sec \theta = \frac{\sqrt{x^2 + y^2}}{x} = \frac{\sqrt{(-4)^2 + 0^2}}{-4} = \frac{4}{-4} = -1$$

REF: 011520a2

8 ANS: 2

$$\cos\theta = -\frac{3}{5} \quad \sec\theta = -\frac{5}{3}$$

REF: 011621a2

9 ANS: 4

Since the terminal side of θ passes through (-3,-4), $\cos \theta < 0$ and $\sin \theta < 0$. $\cos \theta < 0 \rightarrow \sec \theta < 0$

$$\tan\theta = \frac{\sin\theta}{\cos\theta} \to \frac{-}{-} = +$$

REF: 082420aii

10 ANS: 2

REF: fall9920b

11 ANS:

$$\frac{-1}{\sqrt{2^2 + (-1)^2}} = -\frac{1}{\sqrt{5}}$$

REF: 061832aii

12 ANS:

$$\frac{\sqrt{13}}{2}. \sin \theta = \frac{y}{\sqrt{x^2 + y^2}} = \frac{2}{\sqrt{(-3)^2 + 2^2}} = \frac{2}{\sqrt{13}}. \csc \theta = \frac{\sqrt{13}}{2}.$$

REF: fall0933a2

13 ANS:

$$\sin P = \frac{y}{\sqrt{x^2 + y^2}} = \frac{-8}{\sqrt{5^2 + (-8)^2}} = \frac{-8}{\sqrt{89}} \csc P = -\frac{\sqrt{89}}{8}$$

REF: 081634a2