F.LE.A.4: Exponential Equations 3

- 1 If $ae^{bt} = c$, where a, b, and c are positive, then t equals
 - 1) $\ln\left(\frac{c}{ab}\right)$
 - 2) $\ln\left(\frac{cb}{a}\right)$
 - 3) $\frac{\ln\left(\frac{c}{a}\right)}{b}$
 - $\ln\left(\frac{c}{a}\right)$
- 2 The solution to the equation $5e^{x+2} = 7$ is
 - 1) $-2 + \ln\left(\frac{7}{5}\right)$
 - $2) \quad \left(\frac{\ln 7}{\ln 5}\right) 2$
 - 3) $\frac{-3}{5}$
 - 4) $-2 + \ln(2)$
- 3 The solution to the equation $6(2^{x+4}) = 36$ is
 - 1) -1
 - 2) $\frac{\ln 36}{\ln 12} 4$
 - 3) $\ln(3) 4$
 - 4) $\frac{\ln 6}{\ln 2} 4$
- 4 What is the solution to $8(2^{x+3}) = 48$?
 - 1) $x = \frac{\ln 6}{\ln 2} 3$
 - 2) x = 0
 - 3) $x = \frac{\ln 48}{\ln 16} 3$
 - 4) $x = \ln 4 3$

- 5 Which expression is *not* a solution to the equation $2^t = \sqrt{10}$?
 - 1) $\frac{1}{2}\log_2 10$
 - 2) $\log_2 \sqrt{10}$
 - 3) log₄ 10
 - 4) $\log_{10} 4$
- 6 The solution of $87e^{0.3x} = 5918$, to the *nearest thousandth*, is
 - 1) 0.583
 - 2) 1.945
 - 3) 4.220
 - 4) 14.066
- 7 To the *nearest tenth*, the solution to the equation $4300e^{0.07x} 123 = 5000$ is
 - 1) 1.1
 - 2) 2.5
 - 3) 6.3
 - 4) 68.5
- 8 Using logarithms, find x, to the *nearest hundredth*: $2^x = 5$
- 9 Solve for x to the *nearest hundredth*. $2^x = 28$
- 10 Solve for x to the nearest hundredth: $2^x = \frac{3}{16}$
- 11 Using logarithms, solve the equation $2^{3x} = 7$ for x to the *nearest tenth*.
- 12 Solve $e^{4x} = 12$ algebraically for x, rounded to the *nearest hundredth*.
- 13 Solve algebraically for *x* to the *nearest thousandth*: $2e^{0.49x} = 15$
- Solve $3.8e^{1.5t} = 16$ algebraically for t to the *nearest hundredth*.

F.LE.A.4: Exponential Equations 3 Answer Section

1 ANS: 3
$$e^{bt} = \frac{c}{a}$$

$$\ln e^{bt} = \ln \frac{c}{a}$$

$$bt \ln e = \ln \frac{c}{a}$$

$$t = \frac{\ln \frac{c}{a}}{b}$$

REF: 011813aii

$$\ln e^{x+2} = \ln \frac{7}{5}$$

$$(x+2)\ln e = \ln\frac{7}{5}$$

$$x = -2 + \ln \frac{7}{5}$$

REF: 062207aii

$$6\left(2^{x+4}\right) = 36$$

$$\ln 2^{x+4} = \ln 6$$

$$(x+4)\ln 2 = \ln 6$$

$$x + 4 = \frac{\ln 6}{\ln 2}$$

$$x = \frac{\ln 6}{\ln 2} - 4$$

REF: 082408aii

$$8(2^{x+3}) = 48$$

$$2^{x+3} = 6$$

$$(x+3)\ln 2 = \ln 6$$

$$x + 3 = \frac{\ln 6}{\ln 2}$$

$$x = \frac{\ln 6}{\ln 2} - 3$$

REF: 061702aii

5 ANS: 4

$$\log 2^{t} = \log \sqrt{10} \quad 2) \frac{\log \sqrt{10}}{\log 2} = \log_{2} \sqrt{10}, \quad 1) \log_{2} \sqrt{10} = \log_{2} 10^{\frac{1}{2}} = \frac{1}{2} \log_{2} 10, \quad 3) \log_{4} 10 = \frac{\log_{2} 10}{\log_{2} 4} = \frac{1}{2} \log_{2} 10$$

$$t\log 2 = \log \sqrt{10}$$

$$t = \frac{\log \sqrt{10}}{\log 2}$$

REF: 012009aii

6 ANS: 4

$$\ln e^{0.3x} = \ln \frac{5918}{87}$$

$$x = \frac{\ln \frac{5918}{87}}{0.3}$$

REF: 081801aii

7 ANS: 2

$$4300e^{0.07x} = 5123$$

$$\ln e^{0.07x} = \ln \frac{5123}{4300}$$

$$0.07x = \ln \frac{5123}{4300}$$

$$x = \frac{\ln \frac{5123}{4300}}{0.07}$$

$$x \approx 2.5$$

REF: 012302aii

8 ANS: 2.32

REF: 069542siii

- 9 ANS: 4.81
 - REF: 010141siii
- 10 ANS: -2.42
 - REF: 089839siii
- 11 ANS: 0.9
 - REF: 068636siii
- 12 ANS:

$$\ln e^{4x} = \ln 12$$

$$4x = \ln 12$$

$$x = \frac{\ln 12}{4}$$

$$\approx 0.62$$

- REF: 011530a2
- 13 ANS:

$$\ln e^{0.49x} = \ln 7.5$$

$$0.49x = \ln 7.5$$

$$x = \frac{\ln 7.5}{0.49} \approx 4.112$$

- REF: 062330aii
- 14 ANS:

$$\ln e^{1.5t} = \ln \frac{16}{3.8}$$

$$1.5t = \ln \frac{16}{3.8}$$

$$t = \frac{\ln \frac{16}{3.8}}{1.5} \approx .96$$

REF: 062426aii