Regents Exam Questions F.LE.A.4: Exponential Decay www.jmap.org

F.LE.A.4: Exponential Decay

1 The Fahrenheit temperature, $F(t)$, of a heated object at time t, in minutes, can be modeled by the function below. F_{s} is the surrounding temperature, F_{0} is the initial temperature of the object, and k is a constant.

$$
F(t)=F_{s}+\left(F_{0}-F_{s}\right) e^{-k t}
$$

Coffee at a temperature of $195^{\circ} \mathrm{F}$ is poured into a container. The room temperature is kept at a constant $68^{\circ} \mathrm{F}$ and $k=0.05$. Coffee is safe to drink when its temperature is, at most, $120^{\circ} \mathrm{F}$. To the nearest minute, how long will it take until the coffee is safe to drink?

1) 7
2) 10
3) 11
4) 18

2 The half-life of iodine-131 is 8 days. The percent of the isotope left in the body d days after being introduced is $I=100\left(\frac{1}{2}\right)^{\frac{d}{8}}$. When this equation is written in terms of the number e, the base of the natural logarithm, it is equivalent to $I=100 e^{k d}$. What is the approximate value of the constant, k ?

1) -0.087
2) 0.087
3) -11.542
4) 11.542

3 The equation for radioactive decay is $p=(0.5)^{\frac{t}{H}}$, where p is the part of a substance with half-life H remaining radioactive after a period of time, t. A given substance has a half-life of 6,000 years. After t years, one-fifth of the original sample remains radioactive. Find t, to the nearest thousand years.

Name: \qquad

4 One of the medical uses of Iodine-131 (I-131), a radioactive isotope of iodine, is to enhance x-ray images. The half-life of I-131 is approximately 8.02 days. A patient is injected with 20 milligrams of I-131. Determine, to the nearest day, the amount of time needed before the amount of I-131 in the patient's body is approximately 7 milligrams.

5 The half-life of a radioactive substance is 15 years. Write an equation that can be used to determine the amount, $s(t)$, of 200 grams of this substance that remains after t years. Determine algebraically, to the nearest year, how long it will take for $\frac{1}{10}$ of this substance to remain.

6 An archaeologist can determine the approximate age of certain ancient specimens by measuring the amount of carbon-14, a radioactive substance, contained in the specimen. The formula used to determine the age of a specimen is $A=A_{0} 2^{\frac{-t}{5760}}$, where A is the amount of carbon-14 that a specimen contains, A_{0} is the original amount of carbon-14, t is time, in years, and 5760 is the half-life of carbon-14. A specimen that originally contained 120 milligrams of carbon-14 now contains 100 milligrams of this substance. What is the age of the specimen, to the nearest hundred years?

7 A radioactive substance has a mass of 140 g at 3 p.m. and 100 g at 8 p.m. Write an equation in the form $A=A_{0}\left(\frac{1}{2}\right)^{\frac{t}{h}}$ that models this situation, where h is the constant representing the number of hours in the half-life, A_{0} is the initial mass, and A is the mass t hours after $3 \mathrm{p} . \mathrm{m}$. Using this equation, solve for h, to the nearest ten thousandth. Determine when the mass of the radioactive substance will be 40 g . Round your answer to the nearest tenth of an hour.

F.LE.A.4: Exponential Decay

Answer Section

1 ANS: 4

$$
\begin{aligned}
120 & =68+(195-68) e^{-0.05 t} \\
52 & =127 e^{-0.05 t}
\end{aligned}
$$

$\ln \frac{52}{127}=\ln e^{-0.05 t}$
$\ln \frac{52}{127}=-0.05 t$
$\frac{\ln \frac{52}{127}}{-0.05}=t$

$$
18 \approx t
$$

REF: 081918aii
2 ANS: 1
$100\left(\frac{1}{2}\right)^{\frac{d}{8}}=100 e^{k d}$

$$
\left(\frac{1}{2}\right)^{\frac{1}{8}}=e^{k}
$$

$$
k \approx-0.087
$$

REF: 061818aii
3 ANS:

$$
\begin{aligned}
p & =(.5)^{\frac{t}{H}} \\
.2 & =(.5)^{\frac{t}{6000}} \\
\log .2 & =\log .5^{\frac{t}{6000}} \\
\log .2 & =\frac{t}{6000} \log .5 \\
\frac{\log .2}{\log .5} & =\frac{t}{6000} \\
t & \approx 14000
\end{aligned}
$$

REF: 010429b

4 ANS:

$$
\begin{aligned}
7 & =20(0.5)^{\frac{t}{8.02}} \\
\log 0.35 & =\log 0.5^{\frac{t}{8.02}} \\
\log 0.35 & =\frac{t \log 0.5}{8.02} \\
\frac{8.02 \log 0.35}{\log 0.5} & =t \\
t & \approx 12
\end{aligned}
$$

REF: 081634aii
5 ANS:
$s(t)=200(0.5)^{\frac{t}{15}} \quad \frac{1}{10}=(0.5)^{\frac{t}{15}}$

$$
\begin{aligned}
\log \frac{1}{10} & =\log (0.5)^{\frac{t}{15}} \\
-1 & =\frac{t \cdot \log (0.5)}{15} \\
t & =\frac{-15}{\log (0.5)} \approx 50
\end{aligned}
$$

REF: 061934aii
6 ANS:

$$
\begin{aligned}
100 & =120(2)^{\frac{-t}{5760}} \\
\frac{5}{6} & =(2)^{\frac{-t}{5700}} \\
\log \frac{5}{6} & =\log 2^{\frac{-t}{5760}} \\
\log \frac{5}{6} & =\frac{-t}{5760} \log 2 \\
\log \frac{5}{6} & =\frac{-t}{5760} \\
\log 2 & \approx 1500
\end{aligned}
$$

REF: 060431b

7 ANS:

$$
\begin{array}{rlrl}
100=140\left(\frac{1}{2}\right)^{\frac{5}{h}} \log \frac{100}{140} & =\log \left(\frac{1}{2}\right)^{\frac{5}{h}} & 40 & =140\left(\frac{1}{2}\right)^{\frac{t}{10.3002}} \\
\log \frac{5}{7}= & \frac{5}{h} \log \frac{1}{2} & \log \frac{2}{7} & =\log \left(\frac{1}{2}\right)^{\frac{t}{10.3002}} \\
h & =\frac{5 \log \frac{1}{2}}{\log \frac{5}{7}} \approx 10.3002 \\
\log \frac{2}{7} & =\frac{t \log \left(\frac{1}{2}\right)}{10.3002} \\
t & =\frac{10.3002 \log \frac{2}{7}}{\log \frac{1}{2}} \approx 18.6
\end{array}
$$

REF: 061737aii

