Regents Exam Questions F.IF.C.9: Comparing Quadratic Functions Name: www.jmap.org

F.IF.C.9: Comparing Quadratic Functions

1 Which quadratic function has the largest maximum over the set of real numbers?

1) .	f(x) = -	$x^2 + 2x$	+4 3)	$g(x) = -(x-5)^2$		
	x	k(x)		x	h(x)	
	-1	-1		-2	-9	
	0	3		-1	-3	
	1	5		0	1	
	2	5		1	3	
	3	3		2	3	
2)	4	-1	4)	3	1	
-,			•)			

2 Which quadratic function has the largest maximum?

2)

+5

3 Which of the quadratic functions below has the *smallest* minimum value?

4 Four quadratic functions are represented below.

Which function has the *smallest* minimum value?

1)	I	3)	III
2)	II	4)	IV

5 Which quadratic function has the *smallest* minimum value?

6 The quadratic functions r(x) and q(x) are given below.

x	r(x)
-4	-12
-3	-15
-2	-16
-1	-15
0	-12
1	7

$$q(x) = x^2 + 2x - 8$$

The function with the *smaller* minimum value is

- 1) q(x), and the value is -9
- 2) q(x), and the value is -1

3) r(x), and the value is -16

- 4) r(x), and the value is -2
- 7 Four quadratic functions are shown below.

x	f(x)
-4	-4
-2	4
-1	5
0	4
2	-4

$$g(x) = -(x-4)^2 + 5$$

Which statement is true?

- 1) The maximum of f(x) is less than the maximum of j(x).
- 2) The maximum of g(x) is less than the maximum of h(x).

$$j(x) = -\frac{1}{2}x^2 + x + 4$$

- 3) The maximum of f(x) equals the maximum of g(x).
- 4) The maximum of h(x) equals the maximum of j(x).

8 Three quadratic functions are given below.

I and III, only

4) I, II, and III

Which of these functions have the same vertex?

- 1) I and II, only
- 2) II and III, only
- 9 Which statement is true about the quadratic functions g(x), shown in the table below, and $f(x) = (x-3)^2 + 2$?

3)

х	g(x)
0	4
1	-1
2	-4
3	-5
4	-4
5	-1
6	4

- 1) They have the same vertex.
- 2) They have the same zeros.
- 3) They have the same axis of symmetry.
- 4) They intersect at two points.

10 Which statement is true about the functions f(x) and g(x), given below?

$$f(x) = -x^2 - 4x - 4$$

- 1) The minimum value of g(x) is greater than the maximum value of f(x).
- 3) f(x) and g(x) have the same roots.
- 2) f(x) and g(x) have the same *y*-intercept.
- 4) f(x) = g(x) when x = -4.
- 11 Given the following quadratic functions:

$g(x) = -x^2 - x + 6$									
and									
X	-3	-2	-1	0	1	2	3	4	5
n(x)	-7	0	5	8	9	8	5	0	-7

Which statement about these functions is true?

- 1) Over the interval $-1 \le x \le 1$, the average 3) rate of change for n(x) is less than that for g(x).
 - 3) The function g(x) has a greater maximum value than n(x).
- 2) The *y*-intercept of g(x) is greater than the 4) *y*-intercept for n(x).
- The sum of the roots of n(x) = 0 is greater than the sum of the roots of g(x) = 0.

12 Let f be the function represented by the graph below.

Let g be a function such that $g(x) = -\frac{1}{2}x^2 + 4x + 3$. Determine which function has the larger maximum value. Justify your answer.

F.IF.C.9: Comparing Quadratic Functions Answer Section

1 ANS: 2 1) $x = \frac{-2}{2(-1)} = 1$; 2) $h = \frac{3}{2}$ Using (0,3), $3 = a\left(0 - \frac{3}{2}\right)^2 + k$; Using (1,5), $5 = a\left(1 - \frac{3}{2}\right)^2 + k$ $y = -1^2 + 2(1) + 4 = 5$ $3 = \frac{9}{4}a + k$ $5 = \frac{1}{4}a + k$ vertex (1,5) $k = 3 - \frac{9}{4}a$ $k = 5 - \frac{1}{4}a$ $5 - \frac{1}{4}a = 3 - \frac{9}{4}a$ $k = 5 - \frac{1}{4}(-1) = \frac{21}{4};$ 3) vertex (5,5); 4) Using c = 1 $-9 = (-2)^2a + (-2)b + 1$ -10 = 4a - 2b20-a = 12-9a vertex $\left(\frac{3}{2}, \frac{21}{4}\right)$ 8a = -8b = 2a + 5a = -1vertex $\left(\frac{3}{2}, \frac{13}{4}\right)$ $-3 = (-1)^{2}a + (-1)b + 1$ 2a + 5 = a + 4 $x = \frac{-3}{2(-1)} = \frac{3}{2}$ $-3 = a - b + 1 \qquad \qquad a = -1$ $b = -1 + 4 = 3 \quad y = -\left(\frac{3}{2}\right)^2 + 3\left(\frac{3}{2}\right) + 1 = -\frac{9}{4} + \frac{18}{4} + \frac{4}{4} = \frac{13}{4}$ b = a + 4

REF: 011823ai

2 ANS: 3

 $h(x) = -x^{2} + x + 6 \qquad \text{Maximum of } f(x) = 9 \quad k(x) = -5x^{2} - 12x + 4 \qquad \text{Maximum of } g(x) < 5$ $x = \frac{-1}{2(-1)} = \frac{1}{2} \qquad x = \frac{12}{2(-5)} = -\frac{6}{5}$ $y = -\left(\frac{1}{2}\right)^{2} + \frac{1}{2} + 6 \qquad y = -5\left(-\frac{6}{5}\right)^{2} - 12\left(-\frac{6}{5}\right) + 4$ $= -\frac{1}{4} + \frac{2}{4} + 6 \qquad = -\frac{36}{5} + \frac{72}{5} + \frac{20}{5}$ $= 6\frac{1}{4} \qquad = \frac{56}{5}$ $= 11\frac{1}{5}$

REF: 061514ai

3 ANS: 2 1) $x = \frac{-2}{2(1)} = -1$, $h(-1) = (-1)^2 + 2(-1) - 6 = -7$; 2) y = -10; 3) $k\left(\frac{-5 + -2}{2}\right) = (-3.5 + 5)(-3.5 + 2) = -2.25$; 4) y = -6

REF: 061813ai

4 ANS: 1

1) -7; 2) -4; 3)
$$x = \frac{-6}{2(1)} = -3$$
, $c(-3) = (-3)^2 + 6(-3) + 3 = -6$; 4) -5

REF: 062414ai

5 ANS: 1
1)
$$f\left(\frac{-5}{2(6)}\right) \approx -3.04$$
; 2) $h(2.5) = (2.5-2)(2.5-3) = -0.25$; 3) $g(2) = -2$; 4) 0

REF: 012320ai

6 ANS: 3

The minimum of r(x) is -16. The minimum of q(x) is $-9\left(x = \frac{-2}{2(1)} = -1, q(-1) = -9\right)$.

REF: 081917ai

7 ANS: 3

Maximum of f(x) = 5 Maximum of h(x) = 4 Maximum of g(x) = 5 $j(x) = -\frac{1}{2}x^2 + x + 4$

$$x = \frac{-1}{2\left(-\frac{1}{2}\right)} = 1$$
$$j(1) = -\frac{1}{2}(1)^{2} + 1 + 4 = 4\frac{1}{2}$$

REF: 062219ai

8 ANS: 3 f and h's vertex is (-2,5). g's axis of symmetry is x = -1.5.

REF: 062319ai

9 ANS: 3 x = 3

REF: 061717ai

10 ANS: 2

The *y*-intercept of both f(x) and g(x) is -4.

REF: 012013ai

11 ANS: 4

1)
$$\frac{g(1) - g(-1)}{1 - 1} = \frac{4 - 6}{2} = \frac{-2}{2} = -1$$
 2)
$$g(0) = 6$$
 3)
$$x = \frac{-(-1)}{2(-1)} = -\frac{1}{2}; \quad g\left(-\frac{1}{2}\right) = -\left(-\frac{1}{2}\right)^2 + \frac{1}{2} + 6 = 6\frac{1}{4}$$
$$n(0) = 8$$
$$x = 1; \quad n(1) = 9$$

4)
$$g: S = \frac{-(-1)}{-1} = -1$$
$$n: S = -2 + 4 = 2$$

REF: 081521ai

12 ANS:

And: g. The maximum of f is 6. For g, the maximum is 11. $x = \frac{-b}{2a} = \frac{-4}{2\left(-\frac{1}{2}\right)} = \frac{-4}{-1} = 4$ $y = -\frac{1}{2}(4)^2 + 4(4) + 3 = -8 + 16 + 3 = 11$

REF: 081429ai