Name:

Regents Exam Questions F.IF.C.9: Comparing Functions 2 www.jmap.org

F.IF.C.9: Comparing Functions 2

1 Consider $f(x) = 4x^2 + 6x - 3$, and p(x) defined by the graph below.

The difference between the values of the maximum of p and minimum of f is

1)	0.25	3)	3.25
2)	1.25	4)	10.25

2 Which function has the greatest *y*-intercept?

1)	$f(x) = 4\sin(2x)$	3)	$h(x) = 5e^{2x} + 3$
2)	$g(x) = 3x^4 + 2x^3 + 7$	4)	$j(x) = 6\log_2(3x+4)$

Name:

Regents Exam Questions F.IF.C.9: Comparing Functions 2 www.jmap.org

3 Consider the function $p(x) = 3x^3 + x^2 - 5x$ and the graph of y = m(x) below.

Which statement is true?

- 1) p(x) has three real roots and m(x) has two real roots.
- 2) p(x) has one real root and m(x) has two real roots.
- 3) p(x) has two real roots and m(x) has three real roots.
- 4) p(x) has three real roots and m(x) has four real roots.

4 Which function has the characteristic as $x \to -\infty$, $f(x) \to -\infty$?

Regents Exam Questions F.IF.C.9: Comparing Functions 2 www.jmap.org

Name:

5 Which statement regarding the graphs of the functions below is *untrue*?

$$f(x) = 3 \sin 2x, \text{ from } -\pi < x < \pi$$

$$g(x) = (x - 0.5)(x + 4)(x - 2)$$

$$h(x) = \log_2 x$$

$$j(x) = -|4x - 2| + 3$$
e a maximum y-value of 3) g(x) and j(x) have the same end behavior as $x \to -\infty$.

1) f(x) and j(x) have 3.

2)

- f(x), h(x), and j(x) have one y-intercept. 4) g(x), h(x), and j(x) have rational zeros.
- 6 Which function has a maximum *y*-value of 4 and a midline of y = 1?

7 The x-value of which function's x-intercept is larger, f or h? Justify your answer.

$$f(x) = \log(x - 4)$$

$$x \quad h(x)$$

$$-1 \quad 6$$

$$0 \quad 4$$

$$1 \quad 2$$

$$2 \quad 0$$

3 -2

8 Consider the function $h(x) = 2\sin(3x) + 1$ and the function q represented in the table below.

q(x)		
-8		
0		
0		
-2		
0		

Determine which function has the *smaller* minimum value for the domain [-2,2]. Justify your answer.

F.IF.C.9: Comparing Functions 2 Answer Section

1 ANS: 4 The maximum of p is 5. The minimum of f is $-\frac{21}{4}(x = \frac{-6}{2(4)} = -\frac{3}{4}$ $f\left(-\frac{3}{4}\right) = 4\left(-\frac{3}{4}\right)^2 + 6\left(-\frac{3}{4}\right) - 3 = 4\left(\frac{9}{16}\right) - \frac{18}{4} - \frac{12}{4} = -\frac{21}{4}\right). \quad \frac{20}{4} - \left(-\frac{21}{4}\right) = \frac{41}{4} = 10.25$ REF: 011922aii 2 ANS: 4 $f(0) = 4\sin(2(0)) = 0; \ g(0) = 3(0)^4 + 2(0)^3 + 7 = 7; \ h(0) = 5e^{2(0)} + 3 = 8; \ j(0) = 6\log_2(3(0) + 4) = 12$ REF: 082310aii 3 ANS: 1 REF: 081804aii 4 ANS: 4 REF: 062309aii 5 ANS: 2 h(x) does not have a y-intercept. REF: 011719aii 6 ANS: 2 REF: 062222aii 7 ANS: $0 = \log_{10}(x - 4)$ The x-intercept of h is (2,0). f has the larger value. $10^0 = x - 4$ 1 = x - 4*x* = 5 REF: 081630aii

8 ANS:

q has the smaller minimum value for the domain [-2,2]. h's minimum is -1(2(-1)+1) and q's minimum is -8.

REF: 011830aii