NAME:

1. Graph $y = \sin x$.

2. Graph $y = 3 \sin x$.

[1]

[2]

3. Graph $y = -2 \sin x$.

Graph:

$$4. \quad y = -3\sin(3x)$$

$$5. \quad y = -4\sin(2x)$$

$$6. \quad y = -2\sin(4x)$$

[6]

7. Graph $y = -3 \sin x$.

[7]	[8]

9. An electromagnetic wave is modeled by the function $y = 5 \sin 2x$. Sketch a graph of this function.

[9]				

[1]

[2]

[3]

[4]

[5]

[6]

[7] D

[8] B

Check students' graphs. Amplitude should be 5, period should be π , so a maximum is at $\left(\frac{\pi}{4}, 5\right)$, x-intercepts are (0, 0), $\left(\frac{\pi}{2}, 0\right)$, and

[9] $(\pi, 0)$ and a minimum is at $\left(\frac{3\pi}{4}, -5\right)$.