Regents Exam Questions F.IF.C.7: Graphing Trigonometric Functions 1 www.jmap.org

F.IF.C.7: Graphing Trigonometric Functions 1

1 Which sinusoid has the greatest amplitude?

2 What is the amplitude of the function shown in the accompanying graph?

- 3 What is the amplitude of the function $y = \frac{2}{3}\sin 4x$?
 - 1) $\frac{\pi}{2}$ 2) $\frac{2}{3}$ 3) 3π 4) 4

Regents Exam Questions

F.IF.C.7: Graphing Trigonometric Functions 1 www.jmap.org

- 4 What is the amplitude of the graph of the equation
 - $y = 2\sin\frac{1}{2}x?$ $\frac{1}{2}$ 1) 2) 2 3)
 - π 4) 2π
- 5 What is the amplitude of the graph of the equation $y = 2\sin 3x$?
 - $\frac{2\pi}{3}$ 1)

 - 2 2)
 - 3) 3 6π
- 6 The equation below can be used to model the height of a tide in feet, H(t), on a beach at t hours.

$$H(t) = 4.8\sin\!\left(\frac{\pi}{6}\,(t+3)\right) + 5.1$$

Using this function, the amplitude of the tide is

- $\frac{\pi}{6}$ 1)
- 2) 4.8 3) 3
- 5.1 4)
- 7 A monitor displays the graph $y = 3 \sin 5x$. What will be the amplitude after a dilation of 2?
 - 1) 5
 - 2) 6
 - 3) 7
 - 4) 10

Name:

- 8 What is the amplitude of the graph of $y = \cos 2x$?
- 9 What is the amplitude of the graph of $y = \frac{1}{2} \sin 2x$?
- 10 What is the amplitude of the graph of the equation $y = 4\sin\frac{1}{2}x?$
- 11 What is the amplitude of the graph of the equation $y = 3\sin\frac{1}{2}x?$
- 12 What is the amplitude of the function $y = 3\sin 2x$?
- 13 What will be the amplitude of the image of the curve $y = 2\sin 3x$ after a dilation of scale factor 2?
- 14 On July 21, 2016, the water level in Puget Sound, WA reached a high of 10.1 ft at 6 a.m. and a low of -2 ft at 12:30 p.m. Across the country in Long Island, NY, Shinnecock Bay's water level reached a high of 2.5 ft at 10:42 p.m. and a low of -0.1 ft at 5:31 a.m. The water levels of both locations are affected by the tides and can be modeled by sinusoidal functions. Determine the difference in amplitudes, in feet, for these two locations.

F.IF.C.7: Graphing Trigonometric Functions 1 Answer Section

1	ANS:	4	REF:	081718aii
2	ANS:	2	REF:	010715b
3	ANS:	2	REF:	060403b
4	ANS:	2	REF:	018719siii
5	ANS:	2	REF:	068715siii
6	ANS:	2	REF:	082203aii
7	ANS:	2	REF:	010301b
8	ANS: 1			
9	REF: ANS: $\frac{1}{2}$	068007siii		
10	REF: ANS: 4	018604siii		
11	REF: ANS: 3	010401siii		
12	REF: ANS: 3	089001siii		
13	REF: ANS: 4	080002siii		
14	REF: ANS: <u>10.1 –</u> 2	$\frac{069707 \text{siii}}{2} - \frac{2.50.2}{2}$	$\frac{1}{2} = 6.0$	5 - 1.3 = 4.75
	REF:	081930aii		