F.BF.B.4: Inverse of Functions 3

- 1 If $f(x) = a^x$ where a > 1, then the inverse of the function is
 - 1) $f^{-1}(x) = \log_{x} a$

3) $f^{-1}(x) = \log_a x$

 $2) \quad f^{-1}(x) = a \log x$

- 4) $f^{-1}(x) = x \log a$
- 2 The inverse of a function is a logarithmic function in the form $y = \log_b x$. Which equation represents the original function?
 - 1) $y = b^x$

3) $x = b^y$ 4) by = x

 $2) \quad y = bx$

- 3 What is the inverse of the function $y = \log_3 x$?
 - 1) $y = x^3$

3) $y = 3^x$

 $2) \quad y = \log_{x} 3$

- 4) $x = 3^y$
- 4 What is the inverse of the function $f(x) = \log_4 x$?
 - 1) $f^{-1}(x) = x^4$

3) $f^{-1}(x) = \log_{x} 4$

2) $f^{-1}(x) = 4^x$

- 4) $f^{-1}(x) = -\log_{x} 4$
- 5 Which equation defines a function whose inverse is *not* a function?
 - 1) y = |x|

3) y = 3x + 2

2) y = -x

- 4) $y = 2^x$
- 6 Which two functions are inverse functions of each other?
 - 1) $f(x) = \sin x$ and $g(x) = \cos(x)$
- 3) $f(x) = e^x \text{ and } g(x) = \ln x$
- 2) f(x) = 3 + 8x and g(x) = 3 8x4) f(x) = 2x 4 and $g(x) = -\frac{1}{2}x + 4$
- 7 Consider the function $f(x) = 2^x$. Is f(x) an even function? Justify your answer. Write an equation for g(x), the function that results after f(x) is shifted up 5 units. Write an equation for h(x), the inverse of g(x).

F.BF.B.4: Inverse of Functions 3 Answer Section

1 ANS: 3 REF: 011917aii
2 ANS: 1

$$y = \log_b x$$

 $x = b^y$
 $y = b^x$

REF: 060115b

3 ANS: 3 REF: 011708aii 4 ANS: 2 REF: 061521a2 5 ANS: 1 REF: 068932siii 6 ANS: 3 REF: 081027a2

7 ANS:

No, because
$$f(-x) = 2^{-x}$$
 $g(x) = f(x) + 5$ $y = 2^{x} + 5$
$$2^{-x} \neq 2^{x}$$

$$x = 2^{y} + 5$$

$$\log(x - 5) = \log 2^{y}$$

$$\frac{\log(x - 5)}{\log 2} = \frac{y \log 2}{\log 2}$$

$$\frac{\log(x - 5)}{\log 2} = h(x)$$

REF: 082435aii