F.BF.A.1: Modeling Quadratic Functions

1 Which quadratic function is shown in the accompanying graph?

1)
$$y = -2x$$

- 2) $y = 2x^{2}$ 3) $y = -\frac{1}{2}x^{2}$
- 4) $y = \frac{1}{2}x^2$

2 Which equation is represented by the accompanying graph?

1)
$$y = 2x + 1$$

2) $y = 2(x^2 + 1)$
3) $y = x^2$

$$4) \quad y = 2x^2$$

3 Which is an equation of the parabola shown in the accompanying diagram?

1) $y = -x^{2} + 2x + 3$ 2) $y = -x^{2} - 2x + 3$ 3) $y = x^{2} + 2x + 3$ 4) $y = x^{2} - 2x + 3$

Name:

4 Which equation represents the parabola shown in the accompanying graph?

- 1) $f(x) = (x+1)^2 3$
- 2) $f(x) = -(x-3)^2 + 1$
- 3) $f(x) = -(x+3)^2 + 1$
- 4) $f(x) = -(x-3)^2 3$
- 5 What is the equation of a parabola that goes through points (0, 1), (-1, 6), and (2, 3)?
 - 1) $y = x^2 + 1$
 - 2) $y = 2x^2 + 1$
 - 3) $y = x^2 3x + 1$
 - 4) $y = 2x^2 3x + 1$

6 The graph of a quadratic equation is shown in the accompanying diagram. The scale on the axes is a unit scale. Write an equation of this graph in standard form.

F.BF.A.1: Modeling Quadratic Functions Answer Section

1 ANS: 2

Since the parabola is cupped up, a > 0, eliminating (1) and (3). The point (2, 8) satisfies only $y = 2x^2$. You can also use a graphing calculator's STAT function, input at least three ordered pairs, and calculate the quadratic

REF: 060404b

2 ANS: 1 REF: 010801b

3 ANS: 1

Since the parabola is cupped down, a < 0, eliminating (3) and (4). Based upon the graph, the axis of symmetry is x

$$x = \frac{-b}{2a}$$
$$= 1. \quad x = \frac{-(2)}{2(-1)}.$$
$$x = 1$$

REF: 080017a

4 ANS: 3

When the equation of a quadratic is in vertex form, $y = \alpha(x - h)^2 + k$, (h, k) is the vertex.

REF: 060209b

6 ANS:

y = (x + 6)(x - 3) $y = x^2 + 3x - 18$. a > 0, the y-intercept is -18, and the roots are -6 and 3. $y = x^2 + 6x - 3x - 18$. You can $y = x^2 + 3x - 18$

regression line of best fit. $L_{2(4)} =$

REF: 010328a