Calculus Practice: Rectilinear Motion 2 A particle moves along a vertical line. Its velocity function is v(t) for $t \ge 0$. For each problem, find the acceleration function a(t), the times t when the particle changes directions, the intervals of time when the particle is moving down and moving up, the times t when the acceleration is 0, and the intervals of time when the particle is slowing down and speeding up. 1) $$v(t) = -3t^2 + 44t - 105$$ 2) $$v(t) = -2t + 8$$ 3) $$v(t) = -4t^3 + 30t^2$$ 4) $$v(t) = -4t^3 + 24t^2$$ 5) $$v(t) = -2t + 12$$ 6) $$v(t) = -2t + 16$$ A particle moves along a horizontal line. Its velocity function is v(t) for $t \ge 0$. For each problem, find the acceleration function a(t), the times t when the particle changes directions, the intervals of time when the particle is moving left and moving right, the times t when the acceleration is 0, and the intervals of time when the particle is slowing down and speeding up. 7) $$v(t) = -2t + 14$$ 8) $$v(t) = -4t^3 + 24t^2$$ 9) $$v(t) = -2t + 6$$ 10) $$v(t) = 4t^3 - 42t^2$$ ## Calculus Practice: Rectilinear Motion 2 A particle moves along a vertical line. Its velocity function is v(t) for $t \ge 0$. For each problem, find the acceleration function a(t), the times t when the particle changes directions, the intervals of time when the particle is moving down and moving up, the times t when the acceleration is 0, and the intervals of time when the particle is slowing down and speeding up. 1) $$v(t) = -3t^2 + 44t - 105$$ $$a(t) = -6t + 44$$ Changes direction at: $$t = \left\{3, \frac{35}{3}\right\}$$, Moving down: $0 \le t < 3$, $t > \frac{35}{3}$, Moving up: $3 < t < \frac{35}{3}$ Acceleration zero at: $$t = \left(\frac{22}{3}\right)$$, Slowing down: $0 \le t < 3$, $\frac{22}{3} < t < \frac{35}{3}$, Speeding up: $3 < t < \frac{22}{3}$, $t > \frac{35}{3}$ 2) $$v(t) = -2t + 8$$ $$a(t) = -2$$ Changes direction at: $$t = \{4\}$$, Moving down: $t > 4$, Moving up: $0 \le t < 4$ Acceleration zero: Never, Slowing down: $$0 \le t < 4$$, Speeding up: $t > 4$ 3) $$v(t) = -4t^3 + 30t^2$$ $$a(t) = -12t^2 + 60t$$ Changes direction at: $$t = \left\{ \frac{15}{2} \right\}$$, Moving down: $t > \frac{15}{2}$, Moving up: $0 < t < \frac{15}{2}$ Acceleration zero at: $$t = \{0, 5\}$$, Slowing down: $5 < t < \frac{15}{2}$, Speeding up: $0 < t < 5$, $t > \frac{15}{2}$ 4) $$v(t) = -4t^3 + 24t^2$$ $$a(t) = -12t^2 + 48t$$ Changes direction at: $$t = [6]$$, Moving down: $t > 6$, Moving up: $0 < t < 6$ Acceleration zero at: $$t = \{0, 4\}$$, Slowing down: $4 < t < 6$, Speeding up: $0 < t < 4$, $t > 6$ 5) $$v(t) = -2t + 12$$ $$a(t) = -2$$ Changes direction at: $$t = \{6\}$$, Moving down: $t > 6$, Moving up: $0 \le t < 6$ Acceleration zero: Never, Slowing down: $$0 \le t < 6$$, Speeding up: $t > 6$ 6) $$v(t) = -2t + 16$$ $$a(t) = -2$$ Changes direction at: $t = \{8\}$, Moving down: $t > 8$, Moving up: $0 \le t < 8$ Acceleration zero: Never, Slowing down: $0 \le t < 8$, Speeding up: $t > 8$ A particle moves along a horizontal line. Its velocity function is v(t) for $t \ge 0$. For each problem, find the acceleration function a(t), the times t when the particle changes directions, the intervals of time when the particle is moving left and moving right, the times t when the acceleration is 0, and the intervals of time when the particle is slowing down and speeding up. 7) $$v(t) = -2t + 14$$ $$a(t) = -2$$ Changes direction at: $t = \{7\}$, Moving left: $t > 7$, Moving right: $0 \le t < 7$ Acceleration zero: Never, Slowing down: $0 \le t < 7$, Speeding up: $t > 7$ 8) $$v(t) = -4t^3 + 24t^2$$ $$a(t) = -12t^2 + 48t$$ Changes direction at: $t = \{6\}$, Moving left: $t > 6$, Moving right: $0 < t < 6$ Acceleration zero at: $t = \{0, 4\}$, Slowing down: $4 < t < 6$, Speeding up: $0 < t < 4$, $t > 6$ 9) $$v(t) = -2t + 6$$ $a(t) = -2$ Changes direction at: $t = \{3\}$, Moving left: $t > 3$, Moving right: $0 \le t < 3$ Acceleration zero: Never, Slowing down: $0 \le t < 3$, Speeding up: $t > 3$ 10) $$v(t) = 4t^3 - 42t^2$$ $$a(t) = 12t^2 - 84t$$ Changes direction at: $t = \left\{\frac{21}{2}\right\}$, Moving left: $0 < t < \frac{21}{2}$, Moving right: $t > \frac{21}{2}$ Acceleration zero at: $t = \{0, 7\}$, Slowing down: $7 < t < \frac{21}{2}$, Speeding up: $0 < t < 7$, $t > \frac{21}{2}$