Calculus Practice: Rectilinear Motion 2

A particle moves along a vertical line. Its velocity function is v(t) for $t \ge 0$. For each problem, find the acceleration function a(t), the times t when the particle changes directions, the intervals of time when the particle is moving down and moving up, the times t when the acceleration is 0, and the intervals of time when the particle is slowing down and speeding up.

1)
$$v(t) = -3t^2 + 44t - 105$$

2)
$$v(t) = -2t + 8$$

3)
$$v(t) = -4t^3 + 30t^2$$

4)
$$v(t) = -4t^3 + 24t^2$$

5)
$$v(t) = -2t + 12$$

6)
$$v(t) = -2t + 16$$

A particle moves along a horizontal line. Its velocity function is v(t) for $t \ge 0$. For each problem, find the acceleration function a(t), the times t when the particle changes directions, the intervals of time when the particle is moving left and moving right, the times t when the acceleration is 0, and the intervals of time when the particle is slowing down and speeding up.

7)
$$v(t) = -2t + 14$$

8)
$$v(t) = -4t^3 + 24t^2$$

9)
$$v(t) = -2t + 6$$

10)
$$v(t) = 4t^3 - 42t^2$$

Calculus Practice: Rectilinear Motion 2

A particle moves along a vertical line. Its velocity function is v(t) for $t \ge 0$. For each problem, find the acceleration function a(t), the times t when the particle changes directions, the intervals of time when the particle is moving down and moving up, the times t when the acceleration is 0, and the intervals of time when the particle is slowing down and speeding up.

1)
$$v(t) = -3t^2 + 44t - 105$$

$$a(t) = -6t + 44$$

Changes direction at:
$$t = \left\{3, \frac{35}{3}\right\}$$
, Moving down: $0 \le t < 3$, $t > \frac{35}{3}$, Moving up: $3 < t < \frac{35}{3}$

Acceleration zero at:
$$t = \left(\frac{22}{3}\right)$$
, Slowing down: $0 \le t < 3$, $\frac{22}{3} < t < \frac{35}{3}$, Speeding up: $3 < t < \frac{22}{3}$, $t > \frac{35}{3}$

2)
$$v(t) = -2t + 8$$

$$a(t) = -2$$

Changes direction at:
$$t = \{4\}$$
, Moving down: $t > 4$, Moving up: $0 \le t < 4$

Acceleration zero: Never, Slowing down:
$$0 \le t < 4$$
, Speeding up: $t > 4$

3)
$$v(t) = -4t^3 + 30t^2$$

$$a(t) = -12t^2 + 60t$$

Changes direction at:
$$t = \left\{ \frac{15}{2} \right\}$$
, Moving down: $t > \frac{15}{2}$, Moving up: $0 < t < \frac{15}{2}$

Acceleration zero at:
$$t = \{0, 5\}$$
, Slowing down: $5 < t < \frac{15}{2}$, Speeding up: $0 < t < 5$, $t > \frac{15}{2}$

4)
$$v(t) = -4t^3 + 24t^2$$

$$a(t) = -12t^2 + 48t$$

Changes direction at:
$$t = [6]$$
, Moving down: $t > 6$, Moving up: $0 < t < 6$

Acceleration zero at:
$$t = \{0, 4\}$$
, Slowing down: $4 < t < 6$, Speeding up: $0 < t < 4$, $t > 6$

5)
$$v(t) = -2t + 12$$

$$a(t) = -2$$

Changes direction at:
$$t = \{6\}$$
, Moving down: $t > 6$, Moving up: $0 \le t < 6$

Acceleration zero: Never, Slowing down:
$$0 \le t < 6$$
, Speeding up: $t > 6$

6)
$$v(t) = -2t + 16$$

$$a(t) = -2$$
Changes direction at: $t = \{8\}$, Moving down: $t > 8$, Moving up: $0 \le t < 8$
Acceleration zero: Never, Slowing down: $0 \le t < 8$, Speeding up: $t > 8$

A particle moves along a horizontal line. Its velocity function is v(t) for $t \ge 0$. For each problem, find the acceleration function a(t), the times t when the particle changes directions, the intervals of time when the particle is moving left and moving right, the times t when the acceleration is 0, and the intervals of time when the particle is slowing down and speeding up.

7)
$$v(t) = -2t + 14$$

$$a(t) = -2$$
Changes direction at: $t = \{7\}$, Moving left: $t > 7$, Moving right: $0 \le t < 7$
Acceleration zero: Never, Slowing down: $0 \le t < 7$, Speeding up: $t > 7$

8)
$$v(t) = -4t^3 + 24t^2$$

$$a(t) = -12t^2 + 48t$$
Changes direction at: $t = \{6\}$, Moving left: $t > 6$, Moving right: $0 < t < 6$
Acceleration zero at: $t = \{0, 4\}$, Slowing down: $4 < t < 6$, Speeding up: $0 < t < 4$, $t > 6$

9)
$$v(t) = -2t + 6$$

 $a(t) = -2$
Changes direction at: $t = \{3\}$, Moving left: $t > 3$, Moving right: $0 \le t < 3$
Acceleration zero: Never, Slowing down: $0 \le t < 3$, Speeding up: $t > 3$

10)
$$v(t) = 4t^3 - 42t^2$$

$$a(t) = 12t^2 - 84t$$
Changes direction at: $t = \left\{\frac{21}{2}\right\}$, Moving left: $0 < t < \frac{21}{2}$, Moving right: $t > \frac{21}{2}$
Acceleration zero at: $t = \{0, 7\}$, Slowing down: $7 < t < \frac{21}{2}$, Speeding up: $0 < t < 7$, $t > \frac{21}{2}$