Calculus Practice: Rectilinear Motion 1

A particle moves along a horizontal line. Its position function is s(t) for $t \ge 0$. For each problem, find the velocity function v(t), the acceleration function a(t), the times t when the particle changes directions, the intervals of time when the particle is moving left and moving right, the times t when the acceleration is 0, and the intervals of time when the particle is slowing down and speeding up.

1)
$$s(t) = t^4 - 13t^3$$

2)
$$s(t) = t^3 - 10t^2$$

3)
$$s(t) = -t^2 + 7t + 120$$

4)
$$s(t) = t^4 - 14t^3$$

5)
$$s(t) = t^2 - 27t + 180$$

6)
$$s(t) = -t^4 + 9t^3$$

A particle moves along a vertical line. Its position function is s(t) for $t \ge 0$. For each problem, find the velocity function v(t), the acceleration function a(t), the times t when the particle changes directions, the intervals of time when the particle is moving down and moving up, the times t when the acceleration is 0, and the intervals of time when the particle is slowing down and speeding up.

7)
$$s(t) = -t^2 + 13t - 36$$

8)
$$s(t) = t^2 - 16t + 39$$

9)
$$s(t) = -t^2 + 12t + 28$$

10)
$$s(t) = t^4 - 10t^3$$

Calculus Practice: Rectilinear Motion 1

A particle moves along a horizontal line. Its position function is s(t) for $t \ge 0$. For each problem, find the velocity function v(t), the acceleration function a(t), the times t when the particle changes directions, the intervals of time when the particle is moving left and moving right, the times t when the acceleration is 0, and the intervals of time when the particle is slowing down and speeding up.

1)
$$s(t) = t^4 - 13t^3$$
 2) $s(t) = t^3 - 10t^2$ $v(t) = 4t^3 - 39t^2$, $a(t) = 12t^2 - 78t$ $v(t) = 3t^2 - 20t$, $a(t) = 6t - 20$ Changes direction at: $t = \left\{\frac{39}{4}\right\}$, Moving left: $0 < t < \frac{39}{4}$, Changes rightation $\frac{39}{4}$: $t = \left\{\frac{20}{3}\right\}$, Moving left: $0 < t < \frac{20}{3}$, Acceleration zero at: $t = \left\{0, \frac{13}{2}\right\}$, Slowing down: $\frac{13}{2} < t$ Acceleration zero at: $t = \left\{0, \frac{13}{2}\right\}$, Slowing down: $\frac{13}{2} < t$ Acceleration zero at: $t = \left\{0, \frac{13}{2}\right\}$, Slowing down: $\frac{13}{2} < t$ Acceleration zero at: $t = \left\{0, \frac{13}{2}\right\}$, Slowing down: $\frac{13}{2} < t$ Acceleration zero at: $t = \left\{0, \frac{13}{2}\right\}$, Slowing down: $\frac{13}{2} < t$ Acceleration zero at: $t = \left\{0, \frac{13}{2}\right\}$, Slowing down: $\frac{13}{2} < t$ Acceleration zero at: $t = \left\{0, \frac{13}{2}\right\}$, Slowing down: $\frac{13}{2} < t$ Acceleration zero at: $t = \left\{0, \frac{13}{2}\right\}$, Slowing down: $\frac{13}{2} < t$ Acceleration zero at: $t = \left\{0, \frac{13}{2}\right\}$, Slowing down: $\frac{13}{2} < t$ Acceleration zero at: $t = \left\{0, \frac{13}{2}\right\}$, Slowing down: $\frac{13}{2} < t$ Acceleration zero at: $t = \left\{0, \frac{13}{2}\right\}$, Slowing down: $\frac{13}{2} < t$ Acceleration zero at: $t = \left\{0, \frac{13}{2}\right\}$, Slowing down: $\frac{13}{2} < t$ Acceleration zero at: $t = \left\{0, \frac{13}{2}\right\}$, Slowing down: $\frac{13}{2} < t$ Acceleration zero at: $t = \left\{0, \frac{13}{3}\right\}$, Acceleration zero at: $t = \left\{0, \frac{13}{2}\right\}$, Slowing down: $\frac{13}{2} < t$ Acceleration zero at: $t = \left\{0, \frac{13}{3}\right\}$, Acceleration zero at: $t = \left\{0, \frac{13}{2}\right\}$, Slowing down: $\frac{13}{2} < t$ Acceleration zero at: $t = \left\{0, \frac{13}{3}\right\}$, Acceleration zero at: $t = \left\{0,$

3)
$$s(t) = -t^2 + 7t + 120$$
4) $s(t) = t^4 - 14t^3$

$$v(t) = -2t + 7, \ a(t) = -2$$

$$v(t) = 4t^3 - 42t^2, \ a(t) = 12t^2 - 84t$$
Changes direction at: $t = \left\{\frac{7}{2}\right\}$, Moving left: $t > \frac{7}{2}$, Moving heights direction at: $t = \left\{\frac{21}{2}\right\}$, Moving left: $0 < t < \frac{21}{2}$, Acceleration zero: Never, Slowing down: $0 \le t < \frac{7}{2}$, Spheding ration zero at: $t = \{0, 7\}$, Slowing down: $7 < t < \frac{7}{2}$

5)
$$s(t) = t^2 - 27t + 180$$
 6) $s(t) = -t^4 + 9t^3$ $v(t) = 2t - 27$, $a(t) = 2$ $v(t) = -4t^3 + 27$ Changes direction at: $t = \left(\frac{27}{27}\right)$, Moving left: $0 \le t < \frac{27}{27}$, Changes right

$$v(t) = -4t^3 + 27t^2, a(t) = -12t^2 + 54t$$

Changes direction at: $t = \left\{\frac{27}{2}\right\}$, Moving left: $0 \le t < \frac{27}{2}$, Changes direction $\frac{27}{4}$ to $t = \left\{\frac{27}{4}\right\}$, Moving left: $t > \frac{27}{4}$, Movi

Acceleration zero: Never, Slowing down: $0 \le t < \frac{27}{2}$, Speedlierg tip $z = \frac{27}{2}$: $t = \left\{0, \frac{9}{2}\right\}$, Slowing down: $\frac{9}{2} < t < \frac{27}{2}$

A particle moves along a vertical line. Its position function is s(t) for $t \ge 0$. For each problem, find the velocity function v(t), the acceleration function a(t), the times t when the particle changes directions, the intervals of time when the particle is moving down and moving up, the times t when the acceleration is 0, and the intervals of time when the particle is slowing down and speeding up.

7)
$$s(t) = -t^2 + 13t - 36$$

8)
$$s(t) = t^2 - 16t + 39$$

$$v(t) = -2t + 13, a(t) = -2$$

$$v(t) = 2t - 16, a(t) = 2$$

 $v(t) = -2t + 13, \ a(t) = -2$ $v(t) = 2t - 16, \ a(t) = 2$ Changes direction at: $t = \left(\frac{13}{2}\right)$, Moving down: $t > \frac{13}{2}$, Changes direction $\frac{16}{2}t = \{8\}$, Moving down: $0 \le t < 8$, Moving up: $0 \le t < \frac{1}{2}$ Never, Slowing down: $0 \le t < 8$, Special direction $\frac{1}{2}t = \frac{1}{2}t = \frac{1}{2}t$

Acceleration zero: Never, Slowing down: $0 \le t < \frac{13}{2}$, Speeding up: $t > \frac{13}{2}$

9)
$$s(t) = -t^2 + 12t + 28$$

10)
$$s(t) = t^4 - 10t^3$$

$$v(t) = -2t + 12, a(t) = -2$$

$$v(t) = 4t^3 - 30t^2$$
, $a(t) = 12t^2 - 60t$

Changes direction at: t = [6], Moving down: t > 6, Moving up: $0 \le t < 6$ Acceleration zero: Never, Slowing down: $0 \le t < 6$, Speeding up: t > 6

Acceleration zero at: $t = \{0, 5\}$, Slowing down: 5 < t < -