Regents Exam Questions A.SSE.B.3: Modeling Exponential Functions 1 www.jmap.org

A.SSE.B.3: Modeling Exponential Functions 1

- 1 The expression $300(4)^{x+3}$ is equivalent to
 - 1) $300(4)^{x}(4)^{3}$
 - 2) $300(4^x)^3$
 - 3) $300(4)^{x} + 300(4)^{3}$
 - 4) $300^{x}(4)^{3}$
- 2 A computer application generates a sequence of musical notes using the function $f(n) = 6(16)^n$, where *n* is the number of the note in the sequence and f(n) is the note frequency in hertz. Which function will generate the same note sequence as f(n)?
 - 1) $g(n) = 12(2)^{4n}$
 - 2) $h(n) = 6(2)^{4n}$
 - 3) $p(n) = 12(4)^{2n}$
 - 4) $k(n) = 6(8)^{2n}$
- 3 Nora inherited a savings account that was started by her grandmother 25 years ago. This scenario is modeled by the function $A(t) = 5000(1.013)^{t+25}$, where A(t) represents the value of the account, in dollars, *t* years after the inheritance. Which function below is equivalent to A(t)?
 - 1) $A(t) = 5000[(1.013^{t})]^{25}$
 - 2) $A(t) = 5000[(1.013)^{t} + (1.013)^{25}]$
 - 3) $A(t) = (5000)^{t} (1.013)^{25}$
 - 4) $A(t) = 5000(1.013)^{t}(1.013)^{25}$

- 4 Mario's \$15,000 car depreciates in value at a rate of 19% per year. The value, *V*, after *t* years can be modeled by the function $V = 15,000(0.81)^t$. Which function is equivalent to the original function?
 - 1) $V = 15,000(0.9)^{9t}$
 - 2) $V = 15,000(0.9)^{2t}$

3)
$$V = 15,000(0.9)^{\frac{t}{9}}$$

- 4) $V = 15,000(0.9)^2$
- 5 The number of bacteria grown in a lab can be modeled by $P(t) = 300 \cdot 2^{4t}$, where *t* is the number of hours. Which expression is equivalent to P(t)?
 - 1) $300 \bullet 8^t$
 - 2) $300 \bullet 16^t$
 - 3) $300^t \bullet 2^4$
 - 4) $300^{2t} \bullet 2^{2t}$
- 6 In an organism, the number of cells, C(d), after d days can be represented by the function $C(d) = 120 \cdot 2^{3d}$. This function can also be expressed as
 - 1) $C(d) = 240^{3d}$
 - $2) \quad C(d) = 960 \bullet 2^d$
 - $3) \quad C(d) = 120 \bullet 6^d$
 - $4) \quad C(d) = 120 \bullet 8^d$

Name: _

Regents Exam Questions

A.SSE.B.3: Modeling Exponential Functions 1 www.jmap.org

- 7 The population of a city can be modeled by $P(t) = 3810(1.0005)^{7t}$, where P(t) is the population after *t* years. Which function is approximately equivalent to P(t)?
 - 1) $P(t) = 3810(0.1427)^{t}$
 - 2) $P(t) = 3810(1.0035)^{t}$
 - 3) $P(t) = 26,670(0.1427)^{t}$
 - 4) $P(t) = 26,670(1.0035)^{t}$
- 8 The growth of a certain organism can be modeled by $C(t) = 10(1.029)^{24t}$, where C(t) is the total number of cells after *t* hours. Which function is approximately equivalent to C(t)?
 - 1) $C(t) = 240(.083)^{24t}$
 - 2) $C(t) = 10(.083)^t$
 - 3) $C(t) = 10(1.986)^{t}$
 - 4) $C(t) = 240(1.986)^{\frac{t}{24}}$
- 9 Miriam and Jessica are growing bacteria in a laboratory. Miriam uses the growth function $f(t) = n^{2t}$ while Jessica uses the function $g(t) = n^{4t}$, where *n* represents the initial number of bacteria and *t* is the time, in hours. If Miriam starts with 16 bacteria, how many bacteria should Jessica start with to achieve the same growth over time?
 - 1) 32
 - 2) 16
 - 3) 8
 - 4) 4

Name:

10 Materials *A* and *B* decay over time. The function for the amount of material *A* is $A(t) = 1000(0.5)^{2t}$ and for the amount of material *B* is

 $B(t) = 1000(0.25)^{t}$, where *t* represents time in days. On which day will the amounts of material be equal?

- 1) initial day, only
- 2) day 2, only
- 3) day 5, only
- 4) every day
- 11 A laboratory technician used the function $t(m) = 2(3)^{2m+1}$ to model her research. Consider the following expressions:

I.
$$6(3)^{2m}$$
 II. $6(6)^{2m}$ III. $6(9)^{m}$

The function t(m) is equivalent to

- 1) I, only
- 2) II, only
- 3) I and III
- 4) II and III
- 12 Jacob and Jessica are studying the spread of dandelions. Jacob discovers that the growth over *t* weeks can be defined by the function $f(t) = (8) \cdot 2^t$. Jessica finds that the growth function over *t* weeks is $g(t) = 2^{t+3}$. Calculate the number of dandelions that Jacob and Jessica will each have after 5 weeks. Based on the growth from both functions, explain the relationship between f(t) and g(t).

A.SSE.B.3: Modeling Exponential Functions 1 Answer Section

1 ANS: 1 REF: 062313ai 2 ANS: 2 3 ANS: 4 REF: 011714ai REF: 011821ai 4 ANS: 2 $V = 15,000(0.81)^{t} = 15,000((0.9)^{2})^{t} = 15,000(0.9)^{2t}$ REF: 081716ai 5 ANS: 2 REF: 081801ai 6 ANS: 4 $C(d) = 120 \bullet 2^{3d} = 120 \bullet (2^3)^d = 120 \bullet 8^d$ REF: 082218ai 7 ANS: 2 $(1.0005)^7 \approx 1.0035$ REF: 081913ai 8 ANS: 3 $C(t) = 10(1.029)^{24t} = 10(1.029^{24})^t \approx 10(1.986)^t$ REF: 061614ai 9 ANS: 4 $16^{2t} = n^{4t}$ $(16^2)^t = (n^4)^t$ $((4^2)^2)^t = ((n^2)^2)^t$ REF: 011519ai 10 ANS: 4 $1000(0.5)^{2t} = 1000(0.5^2)^t = 1000(0.25)^t$ REF: 011923ai 11 ANS: 3 $t(m) = 2(3)^{2m+1} = 2(3)^{2m}(3)^{1} = 6(3)^{2m} = 6(3^{2})^{m} = 6(9)^{m}$ REF: 012019ai

12 ANS:

 $f(5) = (8) \cdot 2^{5} = 256 \qquad f(t) = g(t)$ $g(5) = 2^{5+3} = 256 \qquad (8) \cdot 2^{t} = 2^{t+3}$ $2^{3} \cdot 2^{t} = 2^{t+3}$ $2^{t+3} = 2^{t+3}$

REF: 011632ai