A.REI.D.11 Quadratic-Linear Systems 2

- 1 Sally's high school is planning their spring musical. The revenue, *R*, generated can be determined by the function $R(t) = -33t^2 + 360t$, where *t* represents the price of a ticket. The production cost, *C*, of the musical is represented by the function C(t) = 700 + 5t. What is the highest ticket price, to the *nearest dollar*, they can charge in order to *not* lose money on the event?
 - 1) t = 3
 - 2) t = 5
 - 3) t = 8
 - 4) t = 11
- 2 A pelican flying in the air over water drops a crab from a height of 30 feet. The distance the crab is from the water as it falls can be represented by the function $h(t) = -16t^2 + 30$, where *t* is time, in seconds. To catch the crab as it falls, a gull flies along a path represented by the function g(t) = -8t + 15. Can the gull catch the crab before the crab hits the water? Justify your answer. [The use of the accompanying grid is optional.]

Name:

3 The price of a stock, A(x), over a 12-month period decreased and then increased according to the equation $A(x) = 0.75x^2 - 6x + 20$, where *x* equals the number of months. The price of another stock, B(x), increased according to the equation B(x) = 2.75x + 1.50 over the same 12-month period. Graph and label both equations on the accompanying grid. State all prices, to the *nearest dollar*, when both stock values were the same.

A.REI.D.11 Quadratic-Linear Systems 2 Answer Section

REF: 060228b

REF: 060328b