A.REI.D.10: Writing Linear Equations 2

- 1 What is an equation of the line that passes through the points (3,-3) and (-3,-3)?
 - 1) y = 3
 - 2) x = -3
 - 3) y = -3
 - $4) \quad x = y$
- 2 Which equation represents the line whose slope is 2 and whose *y*-intercept is 6?
 - 1) y = 2x + 6
 - 2) y = 6x + 2
 - 3) 2y + 6x = 0
 - 4) y + 2x = 6
- 3 An equation of the line that has a slope of 3 and a y-intercept of -2 is
 - $1) \quad x = 3y 2$
 - $2) \quad y = 3x 2$
 - $3) \quad y = -\frac{2}{3}x$
 - 4) y = -2x + 3
- 4 Which equation represents a line that has a slope of 3
 - $\frac{3}{4}$ and passes through the point (2, 1)?
 - 1) 3y = 4x 5
 - 2) 3y = 4x + 2
 - 3) 4y = 3x 2
 - 4) 4v = 3x + 5

- 5 What is the equation of the line that passes through the point (6,-3) and has a slope of $-\frac{4}{3}$?
 - 1) 3y = -4x + 15
 - 2) 3y = -4x + 6
 - 3) -3y = 4x + 15
 - 4) -3y = 4x + 6
- 6 What is an equation of the line that passes through (3,7) and has a slope of 2?
 - 1) y 7 = 2(x 3)
 - 2) y-3 = 2(x-7)
 - 3) y + 7 = 2(x + 3)
 - 4) y + 3 = 2(x + 7)
- 7 What is an equation of the line that passes through the points (1,3) and (8,5)?
 - 1) $y+1 = \frac{2}{7}(x+3)$ 2) $y-5 = \frac{2}{7}(x-8)$ 3) $y-1 = \frac{2}{7}(x+3)$
 - 4) $y+5=\frac{2}{7}(x-8)$

Name:

Regents Exam Questions A.REI.D.10: Writing Linear Equations 2 www.jmap.org

8 What is an equation of the line that passes through the points (2,7) and (-1,3)?

1)
$$y-2 = \frac{3}{4}(x-7)$$

2) $y-2 = \frac{4}{3}(x-7)$

3)
$$y-7 = \frac{3}{4}(x-2)$$

4) $y-7 = \frac{4}{3}(x-2)$

How many of the equations listed below represent 9 the line passing through the points (2,3) and (4, -7)?

$$5x + y = 13$$

y + 7 = -5(x - 4)
y = -5x + 13
y - 7 = 5(x - 4)

1)

- 10 Write an equation that represents the line that passes through the points (5,4) and (-5,0).
- 11 Sue and Kathy were doing their algebra homework. They were asked to write the equation of the line that passes through the points (-3,4) and (6,1). Sue

wrote $y - 4 = -\frac{1}{3}(x + 3)$ and Kathy wrote $y = -\frac{1}{3}x + 3$. Justify why both students are correct.

- 12 The graph of a linear equation contains the points (3,11) and (-2,1). Which point also lies on the graph?
 - 1) (2,1)
 - 2) (2,4)
 - 3) (2,6)
 - 4) (2,9)
- 13 Line ℓ contains the points (0,4) and (2,0). Show that the point (-25,81) does or does not lie on line l.
- 14 The accompanying graph represents the yearly cost of playing 0 to 5 games of golf at the Shadybrook Golf Course. What is the total cost of joining the club and playing 10 games during the year?

A.REI.D.10: Writing Linear Equations 2 Answer Section

1 2 3 4	ANS: 3 ANS: 1 ANS: 2 ANS: 3	REF: 010910ia REF: 010905a REF: 010408a
	y = mx + b $y =$	$\frac{3}{4}x - \frac{1}{2}$
	$1 = \left(\frac{3}{4}\right)(2) + b 4y =$	3x - 2
	$1 = \frac{3}{2} + b$	
	$b = -\frac{1}{2}$	
5	REF: 081219ia ANS: 1	
	$y + 3 = -\frac{4}{3}(x - 6)$	
	3y + 9 = -4x + 24	
	3y = -4x + 15	
6	ANS: 1	REF: 082418ai
7	ANS: 2 $m = \frac{5-3}{8-1} = \frac{2}{7} y - y_1$	$=m(x-x_i)$
	y – 5	$b = \frac{2}{7} \left(x - 8 \right)$
8	REF: 081029ia	
0	$m = \frac{7-3}{21} = \frac{4}{3}$	
9	REF: fall2302ai	
,	$m = \frac{37}{2 - 4} = -5$ 3 =	(-5)(2) + b $y = -5x + 13$ represents the line passing through the points (2,3) and (4,-7). The
	2 . b =	13

fourth equation may be rewritten as y = 5x - 13, so is a different line.

REF: 081720ai

10 ANS:

$$y = \frac{2}{5}x + 2, \quad m = \frac{4 - 0}{5 - (-5)} = \frac{2}{5}, \quad y = mx + b$$

$$4 = \frac{2}{5}(5) + b$$

$$b = 2$$

REF: 080836ia

11 ANS: $m = \frac{4-1}{-3-6} = \frac{3}{-9} = -\frac{1}{3} \quad y - y_1 = m(x - x_1)$ $4 = -\frac{1}{3}(-3) + b \qquad y - 4 = -\frac{1}{3}(x + 3)$ 4 = 1 + b 3 = b $y = -\frac{1}{3}x + 3$

REF: 061629ai

12 ANS: 4

$$m = \frac{11-1}{3-(-2)} = \frac{10}{5} = 2 \quad y = mx + b \quad y = 2x + 5$$
$$11 = 2(3) + b \quad 9 = 2(2) + 5$$
$$5 = b$$

REF: 011511ai

13 ANS:

Find the slope: $m = \frac{4-0}{0-2} = -2$; use the given *y*-intercept (0,4) to write an equation of the line, and substitute into the equation to show that (-25,81) does not lie on line ℓ : y = -2x + 4

 $81 \neq -2(-25) + 4$

REF: 089929a

14 ANS:

390. The cost of joining the club is the *y*-intercept, \$90, and each game costs \$30. This function may be written as y = 30x + 90, and used to find the total cost of joining the club and playing 10 games during the year. y = 30x + 90

= 30(10) + 90

= 390

REF: 060025a