Name:

A.REI.B.4: Roots of Quadratics 2

- 1 Which equation has roots whose sum is 3 and whose product is -4?
 - 1) $x^2 + 3x 4 = 0$
 - 2) $x^2 3x 4 = 0$
 - 3) $x^2 + 4x 3 = 0$
 - 4) $x^2 4x + 3 = 0$
- 2 Juan has been told to write a quadratic equation where the sum of the roots is equal to -3 and the product of the roots is equal to -9. Which equation meets these requirements?
 - 1) $x^2 + 3x + 9 = 0$
 - 2) $x^2 12x + 27 = 0$
 - 3) $2x^2 + 6x 18 = 0$
 - 4) (x+3)(x+9) = 0
- 3 For which equation does the sum of the roots equal -3 and the product of the roots equal 2?
 - 1) $x^2 + 2x 3 = 0$
 - 2) $x^2 3x + 2 = 0$
 - 3) $2x^2 + 6x + 4 = 0$
 - 4) $2x^2 6x + 4 = 0$
- 4 For which equation does the sum of the roots equal 3 and the product of the roots equal 4.5?
 - 1) $x^2 + 3x 9 = 0$
 - 2) $x^2 3x + 9 = 0$
 - 3) $2x^2 + 6x + 9 = 0$
 - 4) $2x^2 6x + 9 = 0$
- 5 For which equation does the sum of the roots equal $\frac{3}{4}$ and the product of the roots equal -2?
 - 1) $4x^2 8x + 3 = 0$
 - $2) \quad 4x^2 + 8x + 3 = 0$
 - 3) $4x^2 3x 8 = 0$
 - 4) $4x^2 + 3x 2 = 0$

6 Which equation has roots with the sum equal to $\frac{9}{4}$

and the product equal to $\frac{3}{4}$?

- 1) $4x^2 + 9x + 3 = 0$ 2) $4x^2 + 9x - 3 = 0$
- 3) $4x^2 9x + 3 = 0$
- 4) $4x^2 9x 3 = 0$
- 7 Which quadratic equation has roots whose sum is $-\frac{9}{4}$ and product is $\frac{2}{3}$? 1) $12x^2 + 8x + 27 = 0$
 - 2) $12x^2 27x + 8 = 0$
 - 3) $12x^2 8x 27 = 0$
 - 4) $12x^2 + 27x + 8 = 0$
- 8 Which quadratic equation has roots with a sum of $\frac{7}{6}$ and a product of $-\frac{1}{2}$?
 - 1) $6x^2 + 7x + 3 = 0$
 - 2) $6x^2 + 7x 3 = 0$
 - 3) $6x^2 7x 3 = 0$
 - 4) $6x^2 7x + 3 = 0$
- 9 Write a quadratic equation such that the sum of its roots is -5 and the product of its roots is 6. What are the roots of this equation?
- 10 Write a quadratic equation such that the sum of its roots is 6 and the product of its roots is -27.

A.REI.B.4: Roots of Quadratics 2 Answer Section

1 ANS: 2 sum of the roots, $-\frac{b}{a} = -\frac{-3}{1} = 3$. product of the roots, $\frac{c}{a} = -\frac{-4}{1} = -4$ REF: 060820b 2 ANS: 3 sum of the roots, $-\frac{b}{a} = -\frac{6}{2} = -3$. product of the roots, $\frac{c}{a} = \frac{-18}{2} = -9$ REF: 010919b 3 ANS: 3 $\frac{-b}{a} = \frac{-6}{2} = -3$. $\frac{c}{a} = \frac{4}{2} = 2$ REF: 011121a2 4 ANS: 4 REF: 069931siii 5 ANS: 3 $S = \frac{-b}{a} = \frac{-(-3)}{4} = \frac{3}{4}$. $P = \frac{c}{a} = \frac{-8}{4} = -2$ REF: fall0912a2 6 ANS: 3 sum of the roots, $\frac{-b}{a} = \frac{-(-9)}{4} = \frac{9}{4}$. product of the roots, $\frac{c}{a} = \frac{3}{4}$ REF: 061208a2 7 ANS: 4 sum of the roots, $\frac{-b}{a} = \frac{-27}{12} = -\frac{9}{4}$. product of the roots, $\frac{c}{a} = \frac{8}{12} = \frac{2}{3}$ REF: 061627a2 8 ANS: 3 $\frac{-b}{a} = \frac{-(-7)}{6} = \frac{7}{6}$. $\frac{c}{a} = \frac{-3}{6} = -\frac{1}{2}$ REF: 011718a2 9 ANS: $x^{2} + 5x + 6 = 0, -3, -2.$ $-\frac{b}{a} = -5.$ $\frac{c}{a} = 6.$ If a = 1, then b = 5 and c = 6. $\frac{x^{2} + 5x + 6 = 0}{(x + 3)(x + 2) = 0}$

REF: 010830b

10 ANS: $x^{2} - 6x - 27 = 0, \ \frac{-b}{a} = 6. \ \frac{c}{a} = -27.$ If a = 1 then b = -6 and c = -27

REF: 061130a2