Regents Exam Questions A.REI.A.1: Binary Operations www.jmap.org

A.REI.A.1: Binary Operations

1 The operation element @ is determined by the following table:

What is the identity element of this operation?

- 1) *a*, only
- 2) *b*, only
- 3) c
- 4) *a* and *b*
- 2 What is the identity element for \clubsuit in the accompanying table?

٠	r	s	t	u
r	t	r	u	s
s	r	s	t	u
t	u	t u	s	r
u	s	u	r	t

- 1) r
- 2) s
- 3) *t*
- 4) *u*

3 An addition table for a subset of real numbers is shown below. Which number is the identity element? Explain your answer.

+	0	1	2	3
0	0	1	2	3
1	1	2 3 4	3	4
2	2	3	4	0
3	3	4	0	1

4 The operation * for the set $\{p, r, s, v\}$ is defined in the accompanying table. What is the inverse element of *r* under the operation *?

*	p	r	s	v
p	s	v	p	r
r	v	p	r	s
s v	s v p r	r	\$	v
v	r	\$	v	p

- 1) *p*
- 2) r 3) s
- 4) v
- 5 In the addition table for a subset of real numbers shown below, which number is the inverse of 3? Explain your answer.

⊕	1	2	3	4
1	2	3	4	1
2	3	4	1	2
1 2 3	4	1	2	3
4	1	2	3	4

Name:

A.REI.A.1: Binary Operations Answer Section

1 ANS: 1

The identity element is a, because any element @ a equals the original element.

REF: 080112a

2 ANS: 2

The identity element is *s* because any element \clubsuit *s* equals the original element.

REF: 080514a

3 ANS:

The identity element is 0, because any element + 0 equals the original element.

REF: 060224a

4 ANS: 4

The identity element is *s* because any element *s equals the original element. Then review the table to solve: $r*_{=} s$. The inverse of *r* is *v* because r*v = s.

REF: 080010a

5 ANS:

The identity element is 4 because any element $\oplus 4 equals$ the original element. Then review the table to solve: $3\oplus_{-} = 4$. The inverse of 3 is 1, because $3\oplus_{-} = 4$.

REF: 080222a