1) $a = \frac{v^2 u^2}{2s}$

$$2) \quad a = \frac{v^2 - u^2}{2s}$$

3)
$$a = v^2 - u^2 - 2s$$

$$4) \quad a = 2s(v^2 - u^2)$$

5 The formula for the area of a trapezoid is $A = \frac{1}{2}(b_1 + b_2)h$. The height, *h*, of the trapezoid may be expressed as 1) $2A - b_1 - b_2$

4 An equation used to find the velocity of an object is given as $v^2 = u^2 + 2as$, where *u* is the initial

velocity, v is the final velocity, a is the acceleration

of the object, and s is the distance traveled. When

this equation is solved for *a*, the result is

2)
$$\frac{2A - b_1}{b_2}$$

3) $\frac{1}{2}A - b_1 - b_2$

$$4) \quad \frac{2A}{b_1 + b_2}$$

6 The volume of a trapezoidal prism can be found using the formula $V = \frac{1}{2}a(b+c)h$. Which equation is correctly solved for *b*?

1)
$$b = \frac{V}{2ah} + c$$

2)
$$b = \frac{V}{2ah} - c$$

3)
$$b = \frac{2V}{ah} + c$$

$$4) \quad b = \frac{2V}{ah} - c$$

A.CED.A.4: Transforming Formulas 1

1 Boyle's Law involves the pressure and volume of gas in a container. It can be represented by the formula $P_1V_1 = P_2V_2$. When the formula is solved for P_2 , the result is

1)
$$P_1V_1V_2$$

2) $\frac{V_2}{P_1V_1}$
3) $\frac{P_1V_1}{V_2}$
4) $\frac{P_1V_2}{V_1}$

2 Michael borrows money from his uncle, who is charging him simple interest using the formula I = Prt. To figure out what the interest rate, r, is, Michael rearranges the formula to find r. His new formula is r equals

1)
$$\frac{I-P}{t}$$
2)
$$\frac{P-I}{t}$$
3)
$$\frac{I}{Pt}$$
4)
$$\frac{Pt}{L}$$

Ī

3 The formula Ax + By = C represents the equation of a line in standard form. Which expression represents y in terms of A, B, C, and x?

1)
$$\frac{C-Ax}{B}$$

2) $\frac{C-A}{C}$

$$\frac{1}{Bx}$$

3)
$$\frac{C}{x+B}$$

4) $\frac{C-B}{x+B}$

4)
$$\frac{C}{Ax}$$

Name:

Name:

7 The amount of energy, Q, in joules, needed to raise the temperature of m grams of a substance is given by the formula $Q = mC(T_f - T_i)$, where C is the

specific heat capacity of the substance. If its initial temperature is T_i , an equation to find its final temperature, T_f , is

1)
$$T_{f} = \frac{Q}{mC} - T_{i}$$

2)
$$T_{f} = \frac{Q}{mC} + T_{i}$$

3)
$$T_{f} = \frac{T_{i} + Q}{mC}$$

4)
$$T_{f} = \frac{Q - mC}{T_{i}}$$

- 8 The equation for the volume of a cylinder is $V = \pi r^2 h$. The positive value of r, in terms of h and V, is
 - 1) $r = \sqrt{\frac{V}{\pi h}}$ 2) $r = \sqrt{V\pi h}$ 3) $r = 2V\pi h$

4)
$$r = \frac{V}{2\pi}$$

The formula for electrical power, *P*, is $P = I^2 R$, 9 where I is current and R is resistance. The formula for *I* in terms of *P* and *R* is

1)
$$I = \left(\frac{P}{R}\right)^2$$

2) $I = \sqrt{\frac{P}{R}}$

3)
$$I = (P - R)^2$$

4) $I = \sqrt{P - R}$

$$4) \quad I = \sqrt{P - K}$$

10 The formula for the volume of a cone is $V = \frac{1}{3} \pi r^2 h$. The radius, *r*, of the cone may be expressed as $\frac{3V}{\pi h}$ 1)

2)
$$\sqrt{\frac{V}{3\pi h}}$$

3) $3\sqrt{\frac{V}{\pi h}}$
4) $\frac{1}{3}\sqrt{\frac{V}{\pi h}}$

11 The distance a free falling object has traveled can be modeled by the equation $d = \frac{1}{2}at^2$, where *a* is acceleration due to gravity and t is the amount of time the object has fallen. What is t in terms of aand d?

1)
$$t = \sqrt{\frac{da}{2}}$$

2) $t = \sqrt{\frac{2d}{a}}$
3) $t = \left(\frac{da}{d}\right)^2$
4) $t = \left(\frac{2d}{a}\right)^2$

Name:

12 The formula for blood flow rate is given by

 $F = \frac{p_1 - p_2}{r}$, where *F* is the flow rate, p_1 the initial pressure, p_2 the final pressure, and *r* the resistance created by blood vessel size. Which formula can *not* be derived from the given formula?

1)
$$p_1 = Fr + p_2$$

2) $p_2 = p_1 - Fr$
3) $r = F(p_2 - p_1)$
4) $r = \frac{p_1 - p_2}{F}$

13 Students were asked to write a formula for the length of a rectangle by using the formula for its perimeter, $p = 2\ell + 2w$. Three of their responses are shown below.

I.
$$\ell = \frac{1}{2}p - w$$

II. $\ell = \frac{1}{2}(p - 2w)$
III. $\ell = \frac{p - 2w}{2}$

Which responses are correct?

- 1) I and II, only
- 2) II and III, only
- 3) I and III, only
- 4) I, II, and III
- 14 When the equation 6 ax = ax 2 is solved for x in terms of a, and $a \neq 0$, the result is
 - 1) 4*a*
 - 2) $\frac{4}{2}$
 - $\frac{2}{a}$
 - 3) 2a
 - 4) $\frac{2}{a}$

15 When solved for x in terms of a, the solution to the equation 3x - 7 = ax + 5 is

1)
$$\frac{12}{3a}$$

2) $\frac{12}{3-a}$
3) $\frac{3a}{12}$
4) $\frac{3-a}{12}$

- 16 When the equation $\frac{x-1}{2} \frac{a}{4} = \frac{3a}{4}$ is solved for x in terms of a, the solution is
 - 1) $\frac{3a}{2} + 1$ 2) a + 13) $\frac{4a + 1}{2}$
 - 4) 2a + 1
- 17 The formula for the sum of the degree measures of the interior angles of a polygon is S = 180(n-2). Solve for *n*, the number of sides of the polygon, in terms of *S*.
- 18 The formula $a = \frac{v_f v_i}{t}$ is used to calculate acceleration as the change in velocity over the period of time. Solve the formula for the final velocity, v_f , in terms of initial velocity, v_i , acceleration, a, and time, t.

Regents Exam Questions A.CED.A.4: Transforming Formulas 1 www.jmap.org

19 The formula
$$d = t \left(\frac{v_i + v_f}{2} \right)$$
 is used to calculate the

distance, d, covered by an object in a given period of time, t. Solve the formula for v_f , the final velocity, in terms of d, t, and v_i , the initial velocity.

- 20 The temperature inside a cooling unit is measured in degrees Celsius, *C*. Josh wants to find out how cold it is in degrees Fahrenheit, *F*. Solve the formula $C = \frac{5}{9}(F - 32)$ for *F* so that Josh can convert Celsius to Fahrenheit.
- 21 The formula for converting degrees Fahrenheit (*F*) to degrees Kelvin (*K*) is:

$$K = \frac{5}{9}(F + 459.67)$$

Solve for F, in terms of K.

- 22 Solve the equation below for x in terms of a. 4(ax+3) - 3ax = 25 + 3a
- 23 A formula for determining the finite sum, *S*, of an arithmetic sequence of numbers is $S = \frac{n}{2}(a+b)$, where *n* is the number of terms, *a* is the first term, and *b* is the last term. Express *b* in terms of *a*, *S*, and *n*.

- 24 The formula for the area of a trapezoid is $A = \frac{1}{2}h(b_1 + b_2)$. Express b_1 in terms of A, h, and b_2 . The area of a trapezoid is 60 square feet, its height is 6 ft, and one base is 12 ft. Find the number of feet in the other base.
- 25 The formula $F_g = \frac{GM_1M_2}{r^2}$ calculates the

gravitational force between two objects where G is the gravitational constant, M_1 is the mass of one object, M_2 is the mass of the other object, and r is the distance between them. Solve for the positive value of r in terms of F_g , G, M_1 , and M_2 .

- 26 The volume of a large can of tuna fish can be calculated using the formula $V = \pi r^2 h$. Write an equation to find the radius, *r*, in terms of *V* and *h*. Determine the diameter, to the *nearest inch*, of a large can of tuna fish that has a volume of 66 cubic inches and a height of 3.3 inches.
- 27 The formula for the volume of a cone is $V = \frac{1}{3} \pi r^2 h$. Solve the equation for *h* in terms of *V*, *r*, and π .
- 28 Using the formula for the volume of a cone, express r in terms of V, h, and π .

Name:

A.CED.A.4: Transforming Formulas 1 Answer Section

1 ANS: 3 REF: 011704ai 2 ANS: 3 REF: 011606ai 3 ANS: 1 Ax + By = CBy = C - Ax $y = \frac{C - Ax}{B}$ REF: 062211ai 4 ANS: 2 $v^2 - u^2 = 2as$ $\frac{v^2 - u^2}{2s} = \frac{2as}{2s}$ $\frac{v^2 - u^2}{2s} = a$ REF: 012408ai 5 ANS: 4 $2A = (b_1 + b_2)h$ $\frac{2A}{b_1 + b_2} = h$ REF: 062315ai 6 ANS: 4 $V = \frac{1}{2}a(b+c)h$ 2V = a(b+c)h $\frac{2V}{ah} = b + c$ $\frac{2V}{ah} - c = b$ REF: 082224ai

7 ANS: 2

$$\frac{Q}{mC} = T_{f} - T_{i}$$

$$\frac{Q}{mC} + T_{i} = T_{f}$$
REF: 012318ai
8 ANS: 1 REF: 011516ai
9 ANS: 2

$$P = I^{2}R$$

$$I^{2} = \frac{P}{R}$$

$$I = \sqrt{\frac{P}{R}}$$
REF: 011920ai
10 ANS: 1

$$V = \frac{1}{3}\pi r^{2}h$$

$$3V = \pi r^{2}h$$

$$\frac{3V}{\pi h} = r^{2}$$

$$\sqrt{\frac{3V}{\pi h}} = r$$
REF: 061423ai
11 ANS: 2

$$d = \frac{1}{2}at^{2}$$

$$2d = at^{2}$$

$$\frac{2d}{a} = t^{2}$$

$$\sqrt{\frac{2d}{a}} = t$$
REF: 061519ai
12 ANS: 3 REF: 061723ai
13 ANS: 4 REF: 061823ai

14 ANS: 2

$$6-ax = ax - 2$$

 $8 = 2ax$
 $\frac{8}{2a} = x$
 $\frac{4}{a} = x$
15 ANS: 2
 $3x - ax = 12$
 $x(3-a) = 12$
 $x = \frac{12}{3-a}$
16 ANS: 4
 $\frac{x-1}{2} = a$
 $x - 1 = 2a$
 $x = 2a + 1$
17 ANS:
 $\frac{S}{180} = n - 2$
 $\frac{S}{180} + 2 = n$
18 ANS:
 $at = v_f - v_i$
 $at + v_i = v_f$
REF: 081928ai

19 ANS:

$$2d = t(v_i + v_f)$$

$$\frac{2d}{t} = v_i + v_f$$

$$\frac{2d}{t} - v_i = v_f$$
REF: 082328ai
20 ANS:
9C = 5F - 160
 $F = \frac{9C + 160}{5}$
21 REF: 062131ai
21 ANS:
9K = 5F + 2298.35
 $F = \frac{9K - 2298.35}{5}$
REF: 081829ai
22 ANS:
 $4ax + 12 - 3ax = 25 + 3a$
 $ax = 13 + 3a$
 $x = \frac{13 + 3a}{a}$
REF: 081632ai
23 ANS:
 $2S = n(a + b)$
25

$$\frac{2S}{n} = a + b$$
$$\frac{2S}{n} - a = b$$

REF: 012032ai

24 ANS: $A = \frac{1}{2}h(b_1 + b_2) \quad b_1 = \frac{2(60)}{6} - 12 = 20 - 12 = 8$ $\frac{2A}{h} = b_1 + b_2$ $\frac{2A}{h} - b_2 = b_1$

REF: 081434ai

25 ANS:

$$F_{g} = \frac{GM_{1}M_{2}}{r^{2}}$$
$$r^{2} = \frac{GM_{1}M_{2}}{F_{g}}$$
$$r = \sqrt{\frac{GM_{1}M_{2}}{F_{g}}}$$

REF: 011830ai 26 ANS:

$$\frac{V}{\pi h} = \frac{\pi r^2 h}{\pi h} \quad d = 2\sqrt{\frac{66}{3.3\pi}} \approx 5$$
$$\frac{V}{\pi h} = r^2$$
$$\sqrt{\frac{V}{\pi h}} = r$$

REF: 081535ai 27 ANS:

$$V = \frac{1}{3} \pi r^2 h$$
$$3V = \pi r^2 h$$
$$\frac{3V}{\pi r^2} = h$$

REF: 061930ai

ID: A

28 ANS:

ANS:

$$V = \frac{1}{3} \pi r^{2} h$$

$$3V = \pi r^{2} h$$

$$\frac{3V}{\pi h} = r^{2}$$

$$\sqrt{\frac{3V}{\pi h}} = r$$

REF: 081727ai