Algebra II Practice A.APR.D.6: Rational Expressions 1 www.jmap.org

Simplify:

1. $\frac{5x+20}{5x-20}$ [A] -1 [B] none of these [C] $\frac{x+4}{x-4}$ [D] $\frac{x+20}{x-20}$

NAME:
4.
$$\frac{3x^2 - 14x + 8}{3x^2 - 48}$$

[A] $\frac{3x - 4}{3(x + 4)}$ [B] $\frac{3x - 2}{3(x - 4)}$

[C]
$$\frac{3x-2}{3(x+4)}$$
 [D] $\frac{3x+2}{3(x-4)}$

2.
$$\frac{3x+15}{3x-15}$$

[A] $\frac{x+5}{x-5}$
[C] -1
[D] $\frac{x+15}{x-15}$
[B] none of these
[C] $(x-6)$
[D] $\frac{x+15}{x-15}$
[C] $(x-6)$
[D] $-(x+6)$

6.
$$\frac{x^2 - x - 12}{4 - x}$$

3. $\frac{2x^2 - 2x - 4}{6x^2 - 6}$ [A] $\frac{x + 2}{3(x + 1)}$ [B] $\frac{x + 1}{3(x - 1)}$ [B] $\frac{x + 1}{3(x - 1)}$ [B] $\frac{x + 1}{3(x - 1)}$

[C]
$$\frac{x-2}{3(x-1)}$$
 [D] $\frac{x-2}{3(x+1)}$

7.
$$\frac{x^2 + 2x - 3}{1 - x}$$

Algebra II Practice A.APR.D.6: Rational Expressions 1 www.jmap.org

Simplify:

$$8. \quad \frac{x^2 - 2x - 8}{4 - x}$$

9.
$$\frac{-7x}{x-x^2}$$

10. $\frac{-9x}{x-x^2}$

11. Compare the quantity in Column A with the quantity in Column B.

$$\frac{\text{Column A}}{x^2 + 4x - 5}, \text{ if } x \neq -5 \qquad \frac{\text{Column B}}{x - 1}, \text{ if } x \neq 6$$

- [A] The quantity in Column A is greater.
- [B] The quantity in Column B is greater.
- [C] The two quantities are equal.
- [D] The relationship cannot be determined on the basis of the information supplied.

NAME:

12. Compare the quantities in Column A and Column B.

Column A	Column B
4x + 8	$3x^2 + 6x$
X	x

- [A] The quantity in Column A is greater.
- [B] The quantity in Column B is greater.
- [C] The quantities are equal.
- [D] The relationship cannot be determined from the information given.

- 13. True or False? The expression $\frac{x^2 3x 10}{x 5}$ is exactly the same as the expression x + 2. Justify your answer.
- 14. The design for a rectangular box has width *x*, length 2*x*, and height 3 in. Compare the surface area of the box to its volume. Write your answer as a rational expression.

15. The sum of a set of data can be modeled by the expression $x^3 + x^2 - 2x$. Write an expression in simplest form for the mean of this data if the are (x-1) data items.

Algebra II Practice A.APR.D.6: Rational Expressions 1 www.jmap.org

[1]	<u>C</u>
[2]	<u>A</u>
[3]	<u>C</u>
[4]	<u>C</u>
[5]	<u>B</u>
[6]	<u>C</u>
[7]	-(x+3)
	-(x+2)
[9]	$\frac{7}{x-1}$
[10]	$\frac{9}{x-1}$
[11]	<u>C</u>
[12]	<u>D</u>
[13]	False; the two expressions give the same result for any given value of x , but the first expression does not exist when $x = 5$.
[14]	$\frac{2x+9}{3x}$
[15]	x(x+2)