- 1. Evaluate (assume $x \neq 0$ and $y \neq 0$): $8x^{0} - 5y^{0}$ [A] 8x - 5y [B] 3xy [C] 3 [D] 0
- 2. Which expression is equal to $\frac{1}{5}$?
 - [A] 5^{-2} [B] $\frac{1}{5^{-1}}$ [C] -5^{1} [D] -5^{2} [E] 5^{-1}

Simplify:

3. $\frac{z^4}{z^{-4}}$. [A] 0 [B] z^{-8} [C] z^{16} [D] z^{-16} [E] z^8

4.
$$\frac{x^{-7}}{x^{-8}}$$

[A] x [B]
$$\frac{1}{x}$$
 [C] x^{15} [D] $\frac{1}{x^{15}}$

5.
$$\frac{36x^5}{12x^{-9}}$$

[A] $3x^4$ [B] $\frac{3}{x^{14}}$ [C] $\frac{3}{x^4}$ [D] $3x^{14}$

6. Write the expression so that it contains only positive exponents. $h^{-3}c^{-7}$

$$\frac{b}{d^{-1}}$$

[A]
$$b^3 c^7 d$$
 [B] $\frac{d}{b^3 c^7}$
[C] $-\frac{b^3 c^7}{d}$ [D] $-\frac{d}{b^3 c^7}$

Simplify:

7.
$$(4x^{3}y^{-2})^{3}$$

[A] $\frac{y^{6}}{64x^{9}}$ [B] $\frac{y^{6}}{12x^{3}}$
[C] $\frac{12x^{3}}{y^{6}}$ [D] $\frac{64x^{9}}{y^{6}}$
8. $(3.4)^{0}$
9. $x^{-5} \cdot x^{-3}$
10. $a^{-6}(a^{4})(a^{-5})$
11. $\frac{x^{-7}}{x^{-9}}$
12. $\frac{c^{-8}d^{-9}}{e^{-2}}$
13. $\frac{2x^{3}y^{-3}}{4x^{7}y^{2}}$
14. $\frac{4^{-1}a^{2}b^{-7}}{4^{2}(ab)^{-4}}$

- 15. Simplify. Write the answer with all exponents positive. $\left(\frac{4x^{-5}p^5}{y^{-4}}\right)^{-2} \left(\frac{y^3p^4}{x^4}\right)^{-2}$
- 16. Choose a fraction to use as a value for the variable *a*. Find the values of a^{-3} and a^{3} . What is true about $a^{-3} \cdot a^{3}$?
- 17. Evaluate

$$x^{2} - 2y^{2} + 2(y - x)(2x^{2} + 5xy^{4} + 5y^{2})^{0}$$
 if $x = 1$
and $y = 1$.

Algebra II Practice A.APR.D.6: Expressions with Negative Exponents www.jmap.org NAME:_

18. Copy and complete the table.

a	1	2			10	
$2a^{-1}$	2	1	$\frac{2}{3}$	0.25		$\frac{1}{8}$

- 19. Solve: $2(x-x^0+3) = 2(2x-1)$
- 20. Compare the quantities in Column A and Column B.

<u>Column A</u> <u>Column B</u>

the value of a^{-2} the value of $-a^2$

- [A] The quantity in Column A is greater. [B] The quantity in Column B is greater.
- [C] The quantities are equal.
- [D] The relationship cannot be determined from the information given.
- 21. Compare the quantities in Column A and Column B.

Column AColumn Bthe exponent of z whenthe exponent of a when $3z^4 \cdot z^7 \cdot z^{-3}$ is simplified $5a^{-4} \cdot a^7 \cdot a^5$ is simplified

- [A] The quantity in Column A is greater. [B] The quantity in Column B is greater.
- [C] The quantities are equal.
- [D] The relationship cannot be determined from the information given.
- 22. Compare the quantities in Column A and Column B.
 - $\frac{\text{Column A}}{\text{the exponent of } x \text{ when}} \qquad \frac{\text{Column B}}{\text{the exponent of } m \text{ when}}$ $\frac{x^7}{x^2} \text{ is simplified} \qquad \frac{m^6}{m^{-3}} \text{ is simplified}$
 - [A] The quantity in Column A is greater. [B] The quantity in Column B is greater.
 - [C] The quantities are equal.
 - [D] The relationship cannot be determined from the information given.
- 23. Compare the quantities in Column A and Column B.

Column A
the exponent of z whenColumn B
the exponent of z when $(z^{-2})^{14}$ is simplified $(z^4)^{-7}$ is simplified

- [A] The quantity in Column A is greater. [B] The quantity in Column B is greater.
- [C] The quantities are equal.
- [D] The relationship cannot be determined from the information given.

Algebra II Practice A.APR.D.6: Expressions with Negative Exponents www.jmap.org

[1]	С	[19]] 3
[2]] D
[3]		[21]] C
[4]		[22]] B
[5]	<u>D</u>	[23]] <u>C</u>
[6]	<u>B</u>		
[7]	<u>D</u>		
[8]	1		
[9]	$\frac{1}{x^8}$		
[10]	$\frac{1}{a^7}$		
[11]	<u>x</u> ²		
[12]	$\frac{e^2}{c^8d^9}$		
[13]	$\frac{1}{2x^4y^5}$		
[14]	$\frac{a^6}{64b^3}$		
[15]	$\frac{x^{18}}{16y^{14}p^{18}}$		
	Answers may vary. Sample: Let $a = \frac{3}{4}$. Then	n	
	$\left(\frac{3}{4}\right)^3 = \frac{27}{64}$ and $\left(\frac{3}{4}\right)^{-3} = \left(\frac{4}{3}\right)^3 = \frac{64}{27}$. So		
[16]	$a^{-3} \cdot a^3 = \frac{27}{64} \cdot \frac{64}{27} = 1.$	_	
[17]			
[18]	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		