The University of the State of New York The State Education Department

EXAMINATION IN EXPERIMENTAL TWELFTH YEAR MATHEMATICS

June 1962

ame of pupil Name of school	
Part I	
Answer twenty-five of the thirty questions in this property answer will receive 2 credits. No partial of the allowed. Write your answer on the line at the respective to the line at the l	credit will
Questions 1-9: Write the <u>number</u> preceding the exprebest completes the statement or answers the question	
If d represents the statement "f is a differentiable function" and c represents the statement "f is a continuous function", which symbolic statement claim that "f is a differentiable function only if it is continuous"?	
$(1) c \longrightarrow d$ $(2) d \longrightarrow \sim c$ $(3) c \longleftrightarrow d$ $(4) \sim c \longrightarrow \sim d$ $(5) \sim c \longrightarrow d$	1
Which of the following is a tautology?	
$(1) [(p \land q) \lor p] \longleftrightarrow (p \lor q)$	
$(2) (\sim p \lor q) \longleftrightarrow (p \longrightarrow q)$	
$(3) [\sim (p \longrightarrow q)] \longleftrightarrow (\sim p \longrightarrow \sim q)$	*
$(4) [(p \land q) \lor \sim p] \longleftrightarrow q$	
$(5) [(p \longrightarrow q) \lor (q \longrightarrow p)] \longleftrightarrow (p \longleftrightarrow q)$	2
	Answer twenty-five of the thirty questions in this correct answer will receive 2 credits. No partial be allowed. Write your answer on the line at the riquestions 1-9: Write the number preceding the expresent completes the statement or answers the question. If d represents the statement "f is a differentiable function" and c represents the statement "f is a continuous function", which symbolic statement claim that "f is a differentiable function only if it is continuous"? (1) $c \longrightarrow d$ (2) $d \longrightarrow \sim c$ (3) $c \longleftrightarrow d$ (4) $\sim c \longrightarrow \sim d$ (5) $\sim c \longrightarrow d$ Which of the following is a tautology? (1) $[(p \land q) \lor p] \longleftrightarrow (p \lor q)$ (2) $(\sim p \lor q) \longleftrightarrow (p \longrightarrow q)$ (3) $[\sim (p \longrightarrow q)] \longleftrightarrow (\sim p \longrightarrow \sim q)$ (4) $[(p \land q) \lor \sim p] \longleftrightarrow q$

3	The	negation	of	x)EV	=	v	+	2)	is	equivalent	to
_	7 tt-		~~	4.00 43.00		3	•	~ /	~ ~		

- (1) $\forall_{x} \forall_{y} (x \neq y + 2)$
- $(2) + x = y \times (y = x + 2)$
- (3) $\exists_x \exists_y (x \neq y + 2)$
- (4) $\exists_x \forall_y (x \neq y + 2)$
- $(5) \exists_{\mathbf{y}} \forall_{\mathbf{x}} (\mathbf{x} = \mathbf{y} + \mathbf{2})$

4 The converse of $\sim p \longrightarrow q$ is equivalent to

- (1) $p \longrightarrow \sim q$
- $(2) p \longrightarrow q$
- $(3) \sim q \longrightarrow p$
- $(4) q \longrightarrow p$
- $(5) \sim p \longrightarrow \sim q$

5 Given that $\sim p \longrightarrow q$ and $\sim r \longrightarrow \sim q$ are accepted statements. Select the statement that is not a valid conclusion.

- $(1) \sim p \longrightarrow r$
- $(2) \sim r \longrightarrow p$
- $(3) \sim p \wedge r$
- (4) $p \vee r$
- $(5) \sim (\sim p \land \sim r)$

of the circles lying within the rectangle I. The shaded area is represented by

- (1) A'
- (2) A U (B N C)
- (3) A' N (B U C)
- (4) (B n c)'
- (5) A n (B U C)'

7	Which statement is implied by the condition that A \cap B' is the empty set?	
	 (1) A U B' is the empty set. (2) A'∩ B is the empty set. (3) A ⊃ B. (4) A ⊂ B. 	
	(5) A = B.	7
8	Which of the following is a rational integral fund	ction of x?
	(1) $x + \frac{3}{x}$	
	$(2) 2x^3 + x^3 - 7$	•
	$(3) \sqrt{x^2 - 9}$	
	$(4) x^{-4} + 6x^{-2} + 9$	
	$(5) \frac{\pi x^2}{2} - 3x \sqrt{3}$	8
9	To establish that a set $G = \{x, y, z,\}$ and an operation indicated by * form a group, certain properties must be noted. Select the condition that is <u>not</u> necessary.	
	$(1) \exists_{e} \forall_{x} (e * x = x)$	
	$(2) \forall_{\mathbf{X}} \exists_{\mathbf{X}}' (\mathbf{x} * \mathbf{x}' = \mathbf{e})$	• •
	$(3) \ \forall_{\mathbf{x}} \forall_{\mathbf{y}} (\mathbf{x} * \mathbf{y} = \mathbf{y} * \mathbf{x})$	
	(4) $\forall_{\mathbf{x}} \forall_{\mathbf{y}} \forall_{\mathbf{z}} [(\mathbf{x} * \mathbf{y}) * \mathbf{z} = \mathbf{x} * (\mathbf{y} * \mathbf{z})]$	
	$(5) \ \forall_{\mathbf{x}} \forall_{\mathbf{y}} \exists_{\mathbf{z}} (\mathbf{z} = \mathbf{x} * \mathbf{y})$	9
LO	List the elements in the set A \cap B if A = {1, 3, and B = {x (0 < x < 10) \land (x is prime)}.	5)
Ll	If $F(x) = x^2 + 2$ and $G(x) = 1 - \frac{1}{x}$, write the	
	expression $G[F(x)]$ in terms of x.	`11
		<i>₹</i>

12	What real					the
	domain of	f if f	is compl	Lex and	given by	
	the rule		$\frac{3}{5-x}$?			•

13 If
$$f(x) = \frac{x^2 - x}{x^2 - 1}$$
 for $x \neq 1$ and if $f(x)$ is to be continuous at $x = 1$, how must $f(1)$ be defined?

14 Find the value of k if
$$(x + 1)$$
 is a factor of $x^8 + kx^3 - 2x + 1$.

15 Write
$$[\sqrt{2} (\cos 45^{\circ} + i \sin 45^{\circ})]^{3}$$
 in the form $a + bi$.

17 Using the ordered pair
$$(x,y)$$
 as an equivalent expression for $\frac{x}{y}$, write as an ordered pair the sum of $(3,8)$ and $(2,3)$.

18 Find the value of x if
$$log(x + 1) + log(x - 3) = log 5$$
.

21 Evaluate:
$$\sum_{n=1}^{5} (2n - 1)^2$$
.

22 Find the smallest positive integer which satisfies the congruence
$$2x + 4 \equiv 0 \mod 11$$
.

23	If f is a nonconstant function defined so that $V_XV_y[f(x + y) = f(x) \cdot f(y)]$, determine the value of $f(0)$.	23
24	Evaluate: $\lim_{h\to 0} \frac{(4-x-h)^2-(4-x)^2}{h}$	24
25	Find the average rate of change of y with respect to x of the function $y = x^3 - 2x - 5$ over the interval from $x = 1$ to $x = 3$.	25
26	A tangent to the curve $y = x^2 - 6x + 8$ has a slope of 4. Find the coordinates of the point at which the tangent touches the curve.	26
27	A particle moves along a line in such a way that its distance S in feet from the starting point at the end of t seconds is given by the equation $S = 3t^2 - 5t$. Find the velocity in feet per second at the end of 3 seconds.	27
28	Find the length of the line segment joining the points of intersection of the graphs of $x^2 - y^2 = 9$ and $x = 5$.	28
29	Find the coordinates of the midpoint of the line segment joining $A(4,3,-6)$ and $B(6,-1,0)$.	29
30	The surface area of a certain sphere is 100 square units. What is the surface area of a sphere having a radius measuring twice the radius of the given sphere?	30

Part II

Answer five questions from this part.

- 31 Find to the nearest tenth the real root of the equation $2x^3 3x 3 = 0$. [10]
- 32 Prove by mathematical induction that, if n is a positive integer, then 3 is a factor of $n^3 + 2n$. [10]
- 33 <u>a</u> Graph $\{(x,y) \mid (2y x 4)(2y + x + 4) = 0\}$. [4]
 - <u>b</u> Graph $\{(x,y) \mid (2y x 4)(2y + x + 4) > 0\}$. [6]
- 34 A function f is defined for all real numbers by the equation $f(x) = Ax^2 + Bx + C$ where A, B and C are certain constants.
 - Write an equation which expresses the fact that the graph of f passes through the point (-1,-15). [2]
 - b Now express the fact that the graph of f has a relative maximum at the point (2,3). [You will need two equations.] [4]
 - C Using the results of parts a and b, determine the values of A, B and C, given that the graph of F passes through the point (-1,-15) and has a relative maximum at the point (2,3). [4]
- 35 An open can has the form of a right circular cylinder and contains 16π cubic inches. Find the radius of the base and the height of the can that will require the least amount of material. [Leave answers in radical form.] [10]
- 36 a Sketch the portion of the surface $\{(x,y,z)' \mid 8x + 20y + 15z = 120\}$ that lies in the first octant, labeling the coordinates of the intercepts. [4]
 - b Find the volume of the pyramid formed by this surface and the coordinate planes. [3]
 - c If a wire model of this pyramid is to be made, find to the nearest tenth the total length of wire needed. [3]

- 37 A container holds six cards, on each of which is painted one of the digits 0,1,2,3,4,5; no digit appears on more than one card. A card is drawn at random and the digit x appearing on it is recorded. From the remaining five cards, another is drawn at random and the digit y appearing on it is recorded.
 - <u>a</u> List the elements of the sample space <u>OR</u> graph the sample space for this experiment. [4]
 - b Find the probabilities for the following events: [2,2,2]

$$E_1 = \{(x,y) \mid x = 5 \lor y = 5\}$$

$$E_2 = \{(x,y) \mid x + y = 5\}$$

$$E_3 = \{(x,y) \mid x + y < 5\}$$

- 38 A function f is defined for positive real numbers by the expression: $f(x) = x^2 2x + 2 (x > 0)$
 - a What is the domain of f? [1]
 - b Sketch the graph of f. [4]
 - c Describe the range of f. [2]
 - \underline{d} Sketch the graph of f^{-1} . [2]
 - e Is f⁻¹ a function? [1]

FOR TEACHERS ONLY

INSTRUCTIONS FOR RATING

EXAMINATION IN EXPERIMENTAL TWELFTH YEAR MATHEMATICS

June 1962

Part I

Allow 50 credits, 2 credits for each of 25 of the following:

(1)4(7)4(13)(19) 369 (25) 11(2) 2(8)5 $\frac{2}{9}$ (26)(5,3)(20) (14) 4(3)4(9) 3(27)13(15) -2+2i(4) 1 $(10) \{3,5\}$ (21) 165 (28)8(16) i(5) 3 (22)9(29)(5,1,-3)(11) 1(17)(25,24)(6) 3 x^{2+2} (23)1(30) 400

Part II

(18)4

(12)5

(33) a

[6]

(24) -8+2x

Shaded area, regions A and B, not including the boundary lines 34 <u>a</u> A - B + C = -15

[1]

[4]

$$\frac{b}{4A} + B = 0$$

 $4A + 2B + C = 3$

[4]

$$c A = -2, B = 8, C = -5$$

38

36

$$r = \sqrt[3]{16}, h = \sqrt[3]{16}$$
 [10]

The coordinates of the

b

[4]

120

a There are 30 elements. [4]

$$\frac{b}{3}, \frac{1}{5}, \frac{2}{5}$$

