TRIGONOMETRY

Thursday, June 22, 1961 — 9:15 a.m. to 12:15 p.m., only

Nan	ne of pupilName of school	***************************************
Nar	ne of teacher	
	on a long trade of the cast of the sense of	
	Part I	
be a	Answer all questions in this part. Each correct answer will receive 2 credit allowed. Unless otherwise specified, answers may be left in terms of π or in	s. No partial credit will n radical form.
1	Express sin (—160°) as a function of a positive acute angle.	1
2	If A is a positive acute angle, express $\tan A$ in terms of $\cos A$.	2
3	Angle A terminates in quadrant IV and $\cos A = \frac{5}{13}$. Express	
	$\sin 2A$ as a fraction.	3
4	Find the number of radians in 135°.	4
5	Angle A is a positive acute angle. Express cot A cos A in terms of $\sin A$.	5
6	Give in radians the period of $y = 2 \sin x$.	6
7	What is the minimum value of $\sin \frac{x}{2}$?	7
8	Find the number of degrees in the positive acute angle θ for which $2 \sin \theta \cos \theta - \cos \theta = 0$.	8
9	Express $\tan 4A$ in terms of $\tan 2A$.	9
10	What is the smallest positive value of A if $A = \operatorname{arc} \cos (-1)$?	10
11	In triangle ABC, $a = 1.8$, $\sin A = 0.9$ and $b = 1$. Find the value	11
12	In triangle ABC, $a = \sqrt{19}$, $b = 3$ and $c = 2$. Find the number of	12
13	In triangle ABC, $C = 120^{\circ}$, $a = 10$ and $b = 7$. Find the value of $A - B$	13
	tan	[OVER]

[1]

14 In triangle ABC, a = 2, b = 3 and triangle ABC?	$C = 60^{\circ}$. What is the area of	14		
15 If angle A terminates in quadrant III	and $\tan A = \frac{1}{4}$, express in radical			
form the positive value of $\sin \frac{A}{2}$.		15		
16 Find log tan 38° 27'.		16		
17 Find to the nearest minute the position 0.2885.	ive acute angle whose cosine is	17		
18 How many distinct noncongruent trian using the data $A=30^{\circ}$, $b=6$ and a	18			
19 Two forces acting upon a body make an angle of 60° with each other. If the magnitudes of the forces are 2 pounds and 4 pounds, respectively, find the number of pounds in the magnitude of the resultant.				
20 If $\csc^2 \theta = 4$, find the values of $\sin \theta$.		20		
Directions (21-26): Write on the line at the right of each of the following the number preceding the expression that best completes the statement.				
21 A course S 60° W is the same, when measured clockwise from the north, as a course				
(1) 060 (2) 120	(3) 240 (4) 300	21		
22 The expression sin 40° + sin 20° is equal to				
(1) sin (40° + 20°) (2) 2 sin 60° cos 20°	(3) 2 cos 30° cos 10° (4) 2 sin 30° cos 10°	22		
23 If $\log \sin \theta = a$, then $\log 100 \sin^2 \theta$ e	onals			
(1) 2 + 20	(3) 100 + 2a			
(2) 2a ²	(4) 4a	23		
24 In a circle of radius r, a chord of length r intercepts a minor arc whose central				
(1) less than 1 radian (2) equal to 1 radian (3) greater than 1 radian but less tha (4) equal to 2 radians	n 2 radians			
		ni 1 24		
25 As x increases from 180° to 360°, cos (1) increases, then decreases (2) decreases, then increases (3) decreases throughout the interva				
(4) increases throughout the interval	1	35		
26 For values of x greater than or equal to 0° but less than 360°, the number of solutions of the equation $\sin x$ (2 $\sin x - 1$) = 0 is				
(1) 1	(3) 3			
(2) 2	(4) 4			
		26		

TRIGONOMETRY - concluded

Directions (27-30): Indicate whether each of the following statements is true for

(1) all real values of A,

(2) some but not all real values of A,

(3) no real values of A,

by writing on the line at the right the number 1, 2 or 3.

 $27 \ 2 \cos^2 A = \cos 2A + 1$

27

 $28 \cos (90^{\circ} - A) = \cos A$

28.....

 $29 \sin A > \tan A$

29....

 $30 \sin A + \sin (-A) = 0$

30.....

Part II

Answer four questions from this part. Show all work unless otherwise directed.

31 Solve the following equation for all values of A greater than or equal to 0° but less than 360°: [Express A to the nearest ten minutes.]

$$9 + 5 \sin A = 12 \cos^2 A$$

32 a On the same set of axes, sketch the graphs of $y = 2 \sin x$ and $y = \cos \frac{x}{2}$ as x varies from

0 to 2π radians. [Label each curve with its equation.] [4, 4]

b From the graphs made in answer to part a, determine the number of solutions of $2 \sin x = \cos \frac{x}{2}$ as x varies from 0 to 2π radians. [2]

33 a Derive the formula for $\sin (x + y)$ if x, y and x + y are positive acute angles. [7]

b Using the formula for $\sin (x + y)$, derive a formula for $\sin 2x$. [3]

34 a Prove that the following equality is an identity: [7]

$$\frac{\sec x \sec y}{\tan x - \tan y} = \csc (x - y)$$

b If $\cos 6\theta = b$ and 6θ is an obtuse angle, express $\cos 3\theta$ in terms of b. [3]

35 In the accompanying diagram angle R is a right angle, angle $TSR = \theta$ and angle TSP is twice angle TSR. PT = c and SR = d.

Prove: $\sin P = \frac{2d \sin \theta}{c}$. [10]

36 A captain sails his ship from point A on a course 040 for 2 hours at an average speed of 30 knots (nautical miles per hour). The captain then changes course to 160 and is forced to knots (nautical miles per hour). He course to 20 knots. He continues on this course reduce his average speed for this leg of the course to 20 knots. He continues on this course for 5 hours and arrives at point C. Find to the nearest ten nautical miles the distance AC. [10]

FOR TEACHERS ONLY

INSTRUCTIONS FOR RATING TRIGONOMETRY

Thursday, June 22, 1961 - 9:15 a.m. to 12:15 p.m., only

Use only red ink or pencil in rating Regents papers. Do not attempt to correct the pupil's work by making insertions or changes of any kind. Use checkmarks to indicate pupil errors.

Unless otherwise specified, mathematically correct variations in the answers will be allowed. In problems involving logarithms, answers should be left correct to four significant digits unless directions say otherwise. Units need not be given when the wording of the questions allows such omissions.

Part I

Allow 2 credits for each correct answer; allow no partial credit. For questions 21-30, allow credit if the pupil has written the correct answer instead of the number 1, 2, 3 or 4.

(1)
$$-\sin 20^{\circ} \text{ or } -\cos 70^{\circ}$$

$$(14) \ \frac{3\sqrt{3}}{2}$$

$$(2) \frac{\sqrt{1-\cos^2 A}}{\cos A}$$

(15)
$$\frac{3}{\sqrt{10}}$$
 or $\frac{3\sqrt{10}}{10}$

$$(3) - \frac{120}{169}$$

$$(4) \frac{3\pi}{4}$$

$$(5) \frac{1-\sin^2 A}{\sin A}$$

(19)
$$2\sqrt{7}$$
 or 5.3

$$(6) 2\pi$$

$$(20) \pm \frac{1}{2}$$

(9)
$$\frac{2 \tan (2A)}{1 - \tan^2 (2A)}$$

(13)
$$\frac{\sqrt{3}}{17}$$

Please refer to the Department's pamphlet Suggestions on the Rating of Regents Examination Papers in Mathematics. Care should be exercised in making deductions as to whether the error is purely a mechanical one or due to a violation of some principle. A mechanical error generally should receive a deduction of 10 percent, while an error due to a violation of some cardinal principle should receive a deduction ranging from 30 percent to 50 percent, depending on the relative importance of the principle in the solution of the problem.

Part II

(34)
$$b \sqrt{\frac{1+b}{2}}$$
 [3]

