January 23, 1957

Part I		
Answer all questions in this part. Each correct answer will receiv	e 2½ credits	
1. Find the number of inches in the radius of a circle in which a central angle of 4 radians intercepts an arc of 6 inches.	1	
2. What is the value of cot $\frac{5}{4}$ π ?	2	
3. Find the positive value of tan (arc $\sin \frac{3}{5}$).	3	
4. Express $\sin(x-y)$ in terms of the sine and cosine of x and of y.	4	
5. If A is a positive acute angle and $\cos A = \frac{1}{9}$, find the		
value of $\sin \frac{1}{2}A$.	5	
6. In triangle ABC, $a=5$, $b=9$ and $\sin A=0.30$. Find the value of $\sin B$.	6	
7. In triangle ABC, $a=4$, $b=5$ and $c=6$. Find the value of $\cos A$.	7	
8. In triangle ABC, $a=6$, $b=4$ and $\tan \frac{1}{2}(A-B)=0.50$. Find the value of $\tan \frac{1}{2}(A+B)$.	88	
9. What is the area of triangle ABC if $a=5$, $b=6$, $\sin C=0.6$, $\cos C=0.8$ and $\tan C=0.75$?	9	
10. Solve the equation $\sin^2 \frac{1}{2}x = 1$ for the smallest positive value of x .	10	
11. If $\log n = 2.3571$, find n.	11	
12. Find log sin 61° 43'.	12	
13. Find to the nearest minute the positive acute angle whose cosine is 0.9030.	13	
14. From an observation post 108 feet directly above a point A on level ground, the angle of depression of point B on the ground is observed to be 6° 10'. Find the distance from A to B to the nearest foot.	14	
Directions (15-20): Indicate the correct completion for each of by writing on the line at the right the letter $a, \ b, \ c$ or d .	the following	
15. If $\sin \theta$ is negative and $\tan \theta$ is positive, then θ is an angle in the (a) first quadrant (b) second quadrant (c) third quadrant (d) fourth quadrant	15	
16. The function csc 270° (a) has a value of —1 (b) has a value of 0 (c) has a value of 1 (d) is not defined	16	

The function one 250° to an

(b) — $\sin 20^{\circ}$ (c) $\sin 70^{\circ}$ (d) — $\sin 70^{\circ}$	17
18. If $m > 1$, the maximum value of $2m \sin 2x$ is (a) 2 (b) m (c) $2m$ (d) $4m$	18
19. Using the data $A=35^{\circ}$, $b=3$ and $a=4$, it is possible to construct (a) two triangles (b) a right triangle (c) no triangle (d) an obtuse triangle	19
20. As x varies from 45° to 315°, the graph of $y = \sin 2x$ (a) does not cross the x-axis (b) crosses the x-axis once (c) crosses the x-axis twice (d) crosses the x-axis three times	20

Part II

Answer three questions from this part. Show all work unless otherwise directed.

- 21. a Starting with the formula for $\cos(x + y)$, derive the formula for $\cos 2x$ in terms of $\cos x$. [4]
 - b Starting with the formula for $\cos 2x$ in terms of $\cos x$, derive the formula for $\cos \frac{1}{2}A$ in terms of $\cos A$. [6]
 - 22. a Prove that the following equation is an identity: [5]

$$\frac{2 \cot x}{1 + \cot^2 x} = \sin 2x$$

$$\sin 7x + \sin 5x$$

b Show that $\frac{\sin^2 (x + \sin^2 5x)}{\cos^2 7x - \cos 5x}$ may be reduced to $-\cot x$. [5]

- 23. Find to the nearest degree all values of x between 0° and 360°, inclusive, that satisfy the equation $3\cos^2 x + 4\sin x + 1 = 0$. [10]
 - 24. a Draw the graph of $y = \tan x$ as x varies from -90° to $+90^\circ$, assigning to x the values 0° , $\pm 30^\circ$, $\pm 45^\circ$, $\pm 60^\circ$, $\pm 90^\circ$. [4]
 - b On the same set of axes used in part a, draw the graph of $y = \cos x$, using the same interval and the same set of values for x. [4]
 - c From the graphs made in answer to parts a and b, determine the number of values of x that satisfy the equation tan x = cos x when
 (1) x is between 0° and 45° [1]
 - (1) x is between 0 and 45 [1] (2) x is between 45° and 90° [1]
- 25. The rectangular coordinates of the point P are represented by x and y. The distance from the origin O to P is represented by r, and the angle that OP makes with the positive portion of the x-axis is represented by θ .
 - a Express x in terms of r and a trigonometric function of θ . [2]
 - **b** Express y in terms of r and a trigonometric function of θ . [2]
 - c Using the results obtained in parts a and b, show that the equation $x^2 y^2 = 4$ can be reduced to the form $r^2 \cos 2\theta = 4$. [6]

Part III

Answer two questions from this part. Show all work.

- 26. In triangle ABC, a = 959, b = 631 and $C = 68^{\circ}$. Find A to the nearest degree. [10]
- 27. Two forces of 437 pounds and 876 pounds, respectively, act upon a body at an acute angle with each other. The angle between the resultant force and the 437-pound force is 41° 10′. Find to the nearest ten minutes the angle formed by the 437-pound and the 876-pound force. [4, 6]
- 28. Airport A is 250 miles directly west of airport C, and airport B is 101 miles directly north of airport C. An airplane flies from C in the direction N 35° W to a point D, which is on the direct path from A to B. Find the distance from C to D to the nearest mile. [4, 6]
- 29. The sides of a triangle are 5.46, 6.87 and 7.65. Find the smallest angle of the triangle to the nearest degree. [10]