New York State Education Department

208TH HIGH SCHOOL EXAMINATION

TRIGONOMETRY

Tuesday, January 21, 1913-1.15 to 4.15 p. m., only

Write at top of first page of answer paper (a) name of school where you have studied, (b) number of weeks and recitations a week in trigonometry. The minimum time requirement in either plane trigonometry or spheric trigonometry is one recitation a week for a school year or two recitations a

To receive credit for plane trigonometry students should answer three questions from group I and three questions from group II.

To receive credit for both plane and spheric trigonometry students should answer three questions from group I and three questions from

Group I

Write the exact numerical values of the following: tan 30°, cot 300°, csc 225°, sin 840°, sec (-150°). Illustrate each

2 Solve for all values of x less than 360° the equation $\tan^2 x + \cot^2 x = 2$. Express the result in circular measure.

3 Prove
$$\frac{\sin (180^{\circ} - y)}{\sin (270^{\circ} - y)} \tan (90^{\circ} + y) + \frac{1}{\sin^{2} (270^{\circ} - y)} = 1 + \sec^{2} y$$
4 In an oblique plane triangle given $\frac{\cos^{2} (270^{\circ} - y)}{\sin^{2} (270^{\circ} - y)} = 1 + \sec^{2} y$

4 In an oblique plane triangle given a=236, b=421, c=385; find A.

Group II

5 Prove completely for the oblique plane triangle $c^2 = a^2 + b^2 - 2ab \cos C$

6 The angles of a triangle are as 3:4:5 and the shortest side is 10; find the other sides.

7 Prove that

$$(\sec y + \csc y) (1 - \cot y) = (\sec y - \csc y) (1 + \cot y)$$

8 Solve the exponential equation $3^{2x-4} = 5^x$

Group III

o Prove that the logarithm of a power of a number is found by multiplying the logarithm of the number by the exponent of the power.

10 Derive from a figure the following formulas for the right spheric triangle whose right angle is at C:

 $\cos B = \tan a \cot c$ $\cos c = \cot A \cot B$

II Solve the right spheric triangle in which $a = 122^{\circ}$ 16', $b = 78^{\circ} 41'$

12 In an oblique spheric triangle given $a=130^{\circ}$ 50', $B=102^{\circ}$, b=120° 18'; find A and c.