Examination January, 1979

Tenth Year Mathematics

PART ONE Answer all questions in this part. Each correct answer will receive 2 credits. No partial credit will be allowed. Unless otherwise specified, answers may be left in terms of π or in radical form. Write your answers in the spaces provided.

1. If one of the legs of a right triangle has length 5 and the	
hypotenuse has length 13, what is the length of the other leg?	1_

- 2. In rhombus ABCD, AB = 3x + 12 and BC = 5x. What is the value of x?
- 3. The circumferences of two circles are 7π and 15π , respectively. What is the ratio of the radius of the smaller circle to that of the larger circle?
- 4. In a right triangle, the measures of the acute angles are x degrees and 5x degrees. Find x.
- 5. In the accompanying diagram, $\angle PQR$ is inscribed in circle O. If $\widehat{mPQ} = 130$ and $\widehat{mQR} = 90$, find $m \angle Q$.

- 6. Triangle ABC has a right angle at C. If median \overline{CD} is drawn and AB=10, find CD.
- 7. An exterior angle at the base of an isosceles triangle measures 100°. How many degrees are there in the measure of the vertex angle of the triangle?

8. Find the number of degrees in the sum of the exterior angles of a quadrilateral.

8____

9. The coordinates of two of the vertices of parallelogram ABCD are A(2,6) and C(5,10). What is the length of diagonal \overline{AC} ?

9____

10. The area of an equilateral triangle is $\frac{25\sqrt{3}}{4}$. Find the length of a side of the triangle.

10____

11. Find the slope of the line that passes through the points (-1,4) and (5,9).

11____

12. In the accompanying diagram, chord \overline{AB} is parallel to diameter \overline{CD} and radius \overline{OA} is drawn. If $\overline{mAB} = 50$, find $\overline{m} \angle AOC$.

12____

13. The circumference of a circle is 18π centimeters. If the length of an arc of this circle is 3π centimeters, find the number of degrees in the measure of the arc.

13____

14. In parallelogram ABCD, the bisectors of angles A and B intersect at E. Find $m \angle AEB$.

14_____

15. The lengths of the diagonals of a rhombus are 5 and 8. What is the area of the rhombus?

15_____

DIRECTIONS (16-29): Write in the space provided the numeral preceding the expression that best completes each statement or answers each question.

- 16. "If a student is in Homeroom 203, then she is a senior." If this statement is true, then which must be true?
 - (1) If a senior is not in Homeroom 203, she is not a senior.
 - (2) If a student is not a senior, she is not in Homeroom 203.
 - (3) Room 203 is the only senior homeroom.
 - (4) Room 202 is not a senior homeroom.

16____

- 17. The locus of points equidistant from two distinct points A and B is
 - (1) one line

(3) two lines

(2) one circle

(4) two circles

17____

18. Which set could represent the lengths of the sides of a triangle?

(1) {1,3,6} (2) {2,4,7} (3) {2,10,12}

(4) {4,6,8}

18_____

19. In the accompanying diagram, if $L_1 \mid\mid L_2$ and $L_3 \mid\mid L_4$, then $\angle x$ is not always congruent to which angle?

- $(1) \angle a$
- $(2) \angle b$
- $(3) \angle c$
- $(4) \angle d$

19____

- **20.** In triangle ABC, $m \angle A = 30$, $m \angle C = 90$, and BC = 10. What is the length of \overline{AB} ?
 - (1) 20
- (2) $10\sqrt{3}$
- (3) 10
- (4) 5

20____

21. In triangle ABC, $CB > CA$ is a point on \overline{BC} such that CE always true? (1) $m \angle CDE > m \angle A$	- ·	
$(2) \ \mathbf{m} \angle \mathbf{B} = \mathbf{m} \angle \mathbf{CED}$	(4) EB = AD	21
22. In a trapezoid, the length length of one base is 10. The leng (1) 18 (2) 12	of the median is 14 and the th of the other base is (3) 6 (4) 4	22
23. What are the coordinates segment which joins the points wand (0,2)?	of the midpoint of the line	
$(1) 2, \frac{1}{2}$	(3) $(2, -3/2)$ (4) $(-2, 3/2)$	
(2) (2,-1/2)	$(4) \ (-2, \frac{3}{2})$	23
24. If two triangles have equal to these bases are equal, then the (1) obtuse (2) equal in area		24
(=) oqua m ar ou	(-)	
25. Which figures are always similar?		
	(3) two hexagons	
(2) two parallelograms	(4) two circles	25
26. The coordinates of point A of point B are $(7,0)$. An equation distant from A and B is $(1) x = 10 (2) y = 10$	of the locus of points equi-	26
(1) 2 10 (2) g 10	(1) y	
27. As shown in the accompany of parallelogram <i>ABCD</i> . Which e the length of <i>h</i> ?		
В		
/!		
A h		
	-	

(3) $h = AD \tan A$ (4) $h = AD \cos A$

27_____

 $(1) h = AB \cos A$

 $(2) h = AB \sin A$

28. In circle O, chords
$$\overline{AB}$$
 and \overline{CD} intersect at E. If $AE = 2$, $EB = 8$, and $CE = 4$, then ED equals

(1) 16

(2) 10

(3) 6

(4) 4

28____

29. In the accompanying diagram, \overline{AB} , \overline{BC} , and \overline{AC} are tangent to circle O at points D, E, and F, respectively. If AB = 14, BE = 6, and EC = 5, then what is the length of \overline{AC} ?

(1) 12

(2) 13

(3) 17

(4) 25

29____

DIRECTIONS (30): Leave all construction lines on the answer sheet.

30. On the answer sheet, find by construction the midpoint of \overline{AB} and draw the median to side \overline{AB} in given triangle ABC. 30_____

PART TWO Answer four questions from this part. Show all work unless otherwise directed.

- 31. Prove either a or b, but not both.
- a Two right triangles are congruent if the hypotenuse and a leg of one are congruent to the corresponding parts of the other. [10]

OR

- b The measure of an angle formed by two tangents is equal to one-half the difference of the measures of the intercepted arcs. [10]
- 32. Given: quadrilateral ABCD, diagonal \overline{AEC} , $\overline{BE} \cong \overline{ED}$, $\overline{BC} \cong \overline{CD}$.

Prove: $\triangle AEB \cong \triangle AED$

[10]

33. In the accompanying diagram, diameter \overline{AC} of circle O is extended to point D, $\overline{DF} \perp \overline{AD}$, \overline{AEF} , where E is a point on circle O and \overline{EC} are drawn.

Prove: $AF \times EC = AC \times FD$ [10]

34. Given: parallelogram ABCD, \overline{FEG} , \overline{AFD} , \overline{BGC} , E is the midpoint of diagonal \overline{BD} .

Prove:
$$a \triangle FED \cong \triangle GEB$$
 [6]
 $b \text{ area of } ABEF = \text{ area of } CDEG$ [4]

35. Given: quadrilateral \overrightarrow{ABCD} inscribed in circle O, diagonals \overrightarrow{BD} and \overrightarrow{CA} , secant \overrightarrow{FDC} ; tangent \overrightarrow{FA} ; $\overrightarrow{mBC}:\overrightarrow{mCD}:\overrightarrow{mDA}:\overrightarrow{mAB}=2:1:4:5$.

- a Find \widehat{mCD} .
- [2]
- b Find $m \angle 1$.
 - d m∠1. [2]
- c Find m∠2.d Find m∠3.
- [2] [2]
- e Find m∠4. [2]
- 36. Regular pentagon ABCDE has a side of length 10. Find the length of an apothem of the pentagon to the nearest integer. [10]
 - 37. The vertices of triangle ABC are A(2,1), B(4,7), and C(8,3).
 - a Using the methods of coordinate geometry, show that $\triangle ABC$ is isosceles and state a reason for your conclusion. [5]
 - b Find the area of $\triangle ABC$. [5]