484 University of the State of New York

High School Department

164TH EXAMINATION

SPHERIC TRIGONOMETRY

Tuesday, June 12, 1900-1.15 to 4.15 p. m., only

Answer ro questions but no more. If more than so are answered only the first to answers will be considered. Division of groups is not allowed. In a spheric triangle A, B and C represent the angles and a, b and c the opposite sides. In a right triangle C represents the right angle and c the hypotenuse. Each complete answer will receive so credits. Papers entitled to so or more credits will be accepted.

- In a right spheric triangle prove that $\sin A = \frac{\sin a}{\sin c}$, $\cos A = \frac{\tan b}{\tan c}$, $\tan A = \frac{\tan a}{\sin b}$
 - an c, $sin \delta$ 2-3 Assume $cos A = \frac{cos a - cos \delta cos c}{sin \delta sin c}$; derive the value of

tan 14 A.

- 4-5 Discuss the question of one solution, two solutions or no solution when there are given an oblique angle and the opposite side of a right spheric triangle.
- 6 Given B and a in a right spheric triangle; write the three logarithmic formulas which determine A, b and ε respectively, and also the check formula.
- 7 Find the numeric values of A, b and c in question 6 when $B = 35^{\circ}$ 30' and $a = 106^{\circ}$ 40'.
- tude 21° 18' north, longitude 157° 50' west. [Radius of earth = 3956 miles; 1° = 69.16 miles.]

 10-11 In an oblique spheric triangle there are given a = 42°
- 40', $b = 83^{\circ}$ 20' and $A = 29^{\circ}$ 30'; find the remaining parts. 12-13 Given $c = 90^{\circ}$, $a = 123^{\circ}$ 53', and $b = 51^{\circ}$ 5'; find the re-
- 12-13 Given $c=90^\circ$, $a=123^\circ$ 55, and $s=51^\circ$ 5; and the remaining parts.

14-15 When the sun's declination is 12° 30' north, at what hour will it rise at Albany, latitude 42° 39' north?