HIGH SCHOOL MATHEMATICS: COURSE I—JUNE 1991 (1)

Part I

Answer 30 questions from this part. Each correct answer will receive 2 credits. No partial credit will be allowed. Write your answers in the spaces provided on the separate answer sheet. Where applicable, answers may be left in terms of π or in radical form. [60]

- 1. The mean of a set of 5 numbers is 10. If all the numbers are doubled, what is the mean of this new set of numbers?
- 2. Solve for x: 0.3x + 1.7 = 2
- 3. Find the value of $a^2 b$ if a = 3 and b = -4.
- 4. Solve for x terms of a and b:

$$2x + a = b$$

5. In the accompanying diagram, \overrightarrow{AB} and \overrightarrow{CD} intersect at E. If $m \angle AEC = 3x - 40$ and $m \angle BED = 2x + 10$, find the value of x.

- 6. If the measures of the angles of a triangle are in the ratio 1:2:3, find the number of degrees in the *smallest* angle.
- 7. If x varies directly as y and x = 60 when y = 5, find the value of y when x = 36.
- 8. In the accompanying diagram, \overrightarrow{AOB} is a straight line, $m \angle AOD = 3x 8$, and $m \angle BOD = x$. Find x.

- 9. Write, in symbolic form, the inverse of $p \rightarrow \sim q$.
- 10. Find the area of the triangle whose vertices have coordinates (8, 0), (0, 10), and (0, 0).
- 11. Solve for x: $\frac{2}{3}x 2 = 10$
- 12. Express $\frac{5a}{6} \frac{4a}{9}$ as a single fraction in simplest form.

HIGH SCHOOL MATHEMATICS: COURSE I—JUNE 1991 (2)

13. In the accompanying diagram, ABCD is a rectangle. If DB = 26 and DC = 24, find BC.

14. Solve for the positive value of x:

$$x^2 - 5x - 24 = 0$$

- 15. Express $2x^2 x 3$ as the product of two binomials.
- 16. From $5x^2 + 3x 6$ subtract $4x^2 5x + 6$.
- 17. Evaluate: $_{7}P_{3}$
- 18. The cumulative frequency table shows the distribution of scores on a math test. How many scores were greater than 90?

Interval	Cumulative Frequency
61-70	4
61-80	10
61-90	12
61-100	16

Directions (19-35): For each question chosen, write on the separate answer sheet the numeral preceding the word or expression that best completes the statement or answers the question.

- 19. A rotation of a figure can be considered
 - (1) a turning of the figure about some fixed point
 - (2) a slide of the figure
 - (3) an enlargement or a reduction of the figure
 - (4) a mirror image of the figure
- 20. A tree 24 feet tall casts a shadow 16 feet long at the same time a man 6 feet tall casts a shadow x feet long. What is the length of the man's shadow?
 - (1) 6 (2) 5 (3) 3 (4) 4
- 21. If a letter is chosen at random from the word "BASEBALL," what is the probability that the letter chosen is not an "L"?
 - (1) $\frac{1}{8}$ (2) $\frac{2}{8}$ (3) $\frac{6}{8}$ (4) $\frac{7}{8}$
- 22. Which inequality is represented by the accompanying graph?

(1)
$$-4 \le x \le 6$$
 (3) $-4 \le x < 6$ (2) $-4 < x < 6$ (4) $-4 < x \le 6$

- 23. The quotient of $\frac{14x^6y}{2x^2y}$, $x \neq 0$, $y \neq 0$, is
 - (1) $7x^3$ (2) $7x^4$ (3) $7x^3y$ (4) $7x^4y$

HIGH SCHOOL MATHEMATICS: COURSE I-JUNE 1991 (3)

- 24. The expression $\frac{5}{2x-10}$ is undefined when x is equal to
 - $(1) \ 0 \ (2) \ -5 \ (3) \ 5 \ (4) \ 10$
- 25. A quadrilateral with exactly one pair of parallel sides is a
 - (1) rhombus (2) rectangle (3) square (4) trapezoid
- 26. When drawn on the same set of axes, the graph of the equations y = x + 1 and y + x = 3 intersect at the point whose coordinates are
 - (1) (2, 1) (2) (1, 2) (3) (2, 3) (4) (-1, 4)
- 27. If the radius of a circle is doubled, then the circumference of the circle is multiplied by
 - $(1) \frac{1}{2}$ (2) 2 (3) 16 (4) 4
- 28. The number of feet in c inches is
 - (1) $\frac{c}{12}$ (2) $\frac{c}{36}$ (3) $\frac{12}{c}$ (4) 12c
- 29. Triangle A'B'C' is the image of $\triangle ABC$ under a dilation such that $A'B' = \frac{1}{2}AB$. Triangles ABC and A'B'C' are
 - (1) congruent but not similar
 - (2) similar but not congruent
 - (3) both congruent and similar
 - (4) neither congruent nor similar
- 30. The perimeter of a square is 4a. What is the area of the square?
 - (1) a^2 (2) $4a^2$ (3) 16 (4) 4
- 31. Let p represent "x > 10" and let q represent "x is a multiple of 5." Which is true if x = 26?
 - (1) $p \vee q$ (2) $p \rightarrow q$ (3) $p \wedge q$ (4) $p \leftrightarrow q$
- 32. The sum of $\sqrt{50}$ and $\sqrt{2}$ is
 - (1) $\sqrt{52}$ (2) 10 (3) $6\sqrt{2}$ (4) 12
- 33. Which ordered pair is in the solution set of the system of inequalities shown in the accompanying graph?
 - (1) (0, 0) (2) (1, 5) (3) (-3, 3) (4) (3, 3)

HIGH SCHOOL MATHEMATICS: COURSE I—JUNE 1991 (4)

- 34. Which statement would be a correct heading for column 3 in the accompanying table?
 - (1) $p \leftrightarrow q$
 - (2) $\sim (p \vee q)$
 - (3) $\sim p \rightarrow q$
 - (4) $\sim (p \wedge q)$

Column	Column 2	Column 5
p	q	?
T	Т	F
T	F	T
F	T	T
F	F	T

- 35. If the ratio of the edges of two cubes is 2:3, the ratio of the two volumes is $\frac{1}{2}$ \frac
 - (1) 2:3 (2) 4:9 (3) 8:27 (4) 2:5

Part II

Answer four questions from this part. All work, including calculations, must be shown on your answer paper. [40]

36. a. On the same set of coordinate axes, graph the following system of inequalities:

$$y \ge -3$$

$$2y - x < 6$$
 [8]

- b. Write the coordinates of a point in the solution set of the system of inequalities graphed in part a. [2]
- 37. If 3 is added to twice the square of an integer, the result is equal to seven times the integer. Find the integer. [Only an algebraic solution will be accepted.] [4, 6]
- 38. The table shows the results of a math test given to a number of students.
 - a. Draw a frequency histogram based on the data. [4]
 - b. In which interval is the median score? [2]
 - c. How many students scored at or below the 25th percentile? [2]
 - d. To get an A on this test, a student had to have a score greater than 90. What is the probability that a student selected at random from this distribution got an A on the test? [2]

Interval	Frequency
96-100	9
91-95	7
86-90	9
81-85	8
76-80	6
71-75	5

- 39. One black marble and two red marbles are in a bag. Erika picks a marble from the bag at random. She looks at it, returns it, and makes a second random selection.
 - a. Draw a tree diagram or list the sample space showing all possible outcomes. [2]
 - b. What is the probability that two red marbles were selected? [2]
 - c. What is the probability that two black marbles were selected? [2]
 - d. What is the probability that one black and one red marble were selected? [2]
 - e. What is the probability that at most one black marble was selected? [2]

HIGH SCHOOL MATHEMATICS: COURSE I-JUNE 1991 (5)

10

15

В

ī

 \Box

Е

121

40. In the accompanying diagram, ABCD is an isosceles trapezoid with altitude \overline{BE} , AB = 10,

- a. Find EC. [2]
- b. Find the area of
 - (1) triangle BEC [2]
 - (2) trapezoid ABCD [3]
 - (3) trapezoid ABED [1]
- c. If diagonal \overline{DB} is drawn, find the area of $\triangle ABD$. [2]

There are two pairs of integers that satisfy both of these conditions:

The larger integer is 9 more than the smaller integer.

The sum of the squares of the integers is 41.

- a. Find the two pairs of integers. [8]
- b. Show that one pair of integers found in part a satisfies both given conditions. [2]
- 42. Solve the following system of equations algebraically and check:

$$4x + 3y = 25 5x + 2y = 33$$
 [8, 2]